[AM]
L. Anderson, V. Moncrief, The global existence problem in general relativity, preprint (1999).
[B1]
J. Bourgain, Nonlinear Schrödinger equations, in “Nonlinear Wave Equations and Frequency Interactions”, AMS, series 4, Park City, 1999.
[B2]
J. Bourgain, Harmonic analysis and nonlinear PDE’s, Proceedings of ICM, Zurich (1994).
[B3]
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear wave equations, I: Schrödinger equations; II: The KdV equation, GAFA 3 (1993), 107–156; 209–262.
CrossRefMATHMathSciNet [Br]
Y. Brenier, Minimal geodesies on groups of volume preserving maps, Comm. Pure. Appl. Math. 52 (1999), 411–452.
CrossRefMathSciNet [BreB]
H. Brezis, F. Browder, Partial differential equations in the 20th century, Encyclopedia Italiana, in its series on the history of the twentieth century, to appear.
[Bru]
Y.Ch. Bruhat, Theoremes d’existence pour certains systemes d’equations aux derivee partielles nonlineaires, Acta Math. 88 (1952), 141–225.
CrossRefMATHMathSciNet [CWY]
A. Chang,
L. Wang,
P. Yang, A regularity of biharmonic maps, C.P.A.M. LII (1999), 1113–1137.
MathSciNet [ChB]
J.Y. Chemin, H. Bahouri, Equations d’ondes quasilineaires et effect dispersif, AJM, to appear.
[Chr1]
D. Christodoulou, The Action Principle and PDE’s, Annals of Math. Studies 146 (1999).
[Chr2]
D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, C.P.A.M. 39 (1986), 267–282.
MATHMathSciNet [ChrK]
D. Christodoulou, S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41 (1993).
[ChrZ]
D. Christodoulou,
A.S.T. Zadeh, On the regularity of spherically symmetric wave-maps, Comm. P. Appl. Math. 46 (1993), 1041–1091.
CrossRefMATH [E]
L.C. Evans, Partial regularity for harmonic maps into spheres, Arch. Rat. Mech. Anal. 116 (1991), 101–113.
CrossRefMATH [FM]
A. Fischer,
J. Marsden, The Einstein evolution equations as a first order quasilinear, symmetric hyperbolic system, Comm. Math. Phys. 28 (1972), 1–38.
CrossRefMATHMathSciNet [FMo]
A. Fischer, V. Moncrief, The Einstein flow, the sigma-constant, and the geometrization of three manifolds, preprint (1999).
[FoK]
D. Foschi, S. Klainerman, On bilinear estimates for solutions to the wave equation, Annales ENS, to appear.
[GGKM]
C.S. Gardner,
J.M. Green,
M.D. Kruskal,
R.M. Miura, Method for solving the KdV equation, Phys. Rev. Lett. 19(1967), 1095–1097.
CrossRefMATH [Gr]
M. Gromov, Partial Differential Relations, Springer Verlag, Berlin, 1986.
MATH [HT]
S. Hildebrandt, A. Tromba, Mathematics and Optimal Form, Scientific American Library, 1984.
[HuI]
G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Penrose conjecture, JDG, to appear.
[J]
F. John, Formation of singularities in elastic waves, Springer Lecture Notes in Phys. 195 (1984), 190–214.
[K]
L. Kapitanky, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett. 1 (1994), 211–223.
MathSciNet [KeT]
M. Keel,
T. Tao, Local and global well-posedness of wave maps on R
^{1+1} for rough data, IMRN 21 (1998), 1117–1156.
CrossRefMathSciNet [KenPV]
C. Kenig,
G. Ponce,
L. Vega, The Cauchy problem for the KdV equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1994), 1–21.
CrossRefMathSciNet [Kl1]
S. Klainerman, Long time behavior of solutions to nonlinear wave equations, Proc. ICM 1983, Warszawa, 1209–1215.
[K12]
S. Klainerman, The null condition and global existence to nonlinear wave equations, AMS Lectures in Applied Mathematics 23 (1986), 293–326.
MathSciNet [K1M1]
S. Klainerman,
M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268.
CrossRefMATHMathSciNet [K1M2]
S. Klainerman,
M. Machedon, Finite energy solutions for the Yang-Mills solutions in ℝ
^{3+1}, Annals of Math. 142 (1995), 39–119.
CrossRefMATHMathSciNet [K1M3]
S. Klainerman,
M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995), 99–103.
CrossRefMATHMathSciNet [K1M4]
S. Klainerman,
M. Machedon, On the algebraic properties of the
H
_{
n/2,1/2} spaces, I.M.R.N 15 (1998), 765–774.
MathSciNet [K1M5]
S. Klainerman,
M. Machedon, On the optimal local regularity for Gauge field theories, Diff. Integr. Eqs. 10:6 (1997), 1019–1030.
MATHMathSciNet [K1S]
S. Klainerman,
S. Selberg, Remark on the optimal regularity for equations of wave maps type, Comm. P.D.E. 22:5–6 (1997), 901–918.
MATHMathSciNet [KIT]
S. Klainerman,
D. Tataru, On the optimal local regularity for the Yang-Mills equations, J. AMS 12:1 (1999), 93–116.
MATHMathSciNet [Ku]
N.H. Kuiper, On
C
^{1} isometric embeddings, I. Proc. Koninkl. Neder. Ak. Wet A-58 (1955), 545–556.
MathSciNet [L1]
H. Llnblad, Counterexamples to local existence for semilinear wave equations, AJM 118 (1996), 1–16.
[L2]
H. Lindblad, Counterexamples to local existence for quasilinear wave equations, MRL, to appear.
[Lu]
J. Lutzen, The Prehistory of the Theory of Distributions, Springer-Verlag, 1992.
[M]
H. Minkowski, Space and Time, English translation of the original article in “The Meaning of Relativity”, Dover, 1952.
[MüS]
S. Müller, M. Struwe, Global existence for wave maps in 1 + 2 dimensions for finite energy data, preprint.
[N]
J. Nash,
C
^{l} isometric embeddings, Ann. of Math. 60 (1954), 383–396.
CrossRefMathSciNet [Ne]
Y. Neeman, Pythagorean and Platonic conceptions in XXth Century physics, in this issue.
[P]
H. Poincaré, Sur les rapports de l’analyse pure et de la physique mathematique, First Int. Congress of Mathematicians, Zurich, 1897.
[R]
T. Riviére, Applications harmonique de
B
^{3} dans
S
^{2} partout disconnues, C.R. Acad. Sci. Paris 314 (1992), 719–723.
MATH [S]
V. Schaeffer, An inviscid flow with compact support in space-time, Journ. Geom. Anal. 3:4 (1993), 343–401.
[Sc]
R. Schoen, A report on some recent progress on nonlinear problems in geometry, Surveys in Differential Geometry 1 (1991), 201–241.
[ScU]
R. Schoen,
K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff Geom. 17 (1982), 307–335; 18 (1983), 329.
MATHMathSciNet [Sh]
J. Shatah, Weak solutions and development of singularities in the SU(2) σ model, Comm. Pure Appl. Math. 41 (1988), 459–469.
CrossRefMATHMathSciNet [ShZ]
J. Shatah,
A.S.T. Zadeh, On the Cauchy problem for equivariant wave maps, C.P.A.M. 47 (1994), 719–754.
MATH [Shn]
A. Shnirelman, On the nonuniqueness of weak solutions for Euler equations, C.P.A.M. 50 (1997), 1261–1286.
MATHMathSciNet [ShS]
J. Shatah,
M. Struwe, Well posedness in energy space for semilinear wave equations with critical growth, Int. Math. Res. Not. 7 (1994), 303–309.
CrossRefMathSciNet [Si]
T. Sideris, Formation of singularities in three-dimensional Vompressible fluids, Comm. Math. Phys. 101 (1985), 155–185.
CrossRefMathSciNet [Sm]
H. Smith, A parametrix construction for wave equations with
C
^{1,1} coefficients, Annales de L’Institut Fourier 48 (1998), 797–835.
MATH [SmS1]
H. Smith, C. Sogge, On Strichartz and eigenfunction estimates for low regularity metrics, preprint.
[SmS2]
H. Smith, C. Sogge, Null form estimates for (1/2,1/2) symbols and local existence for a quasilinear Dirichlet wave equation, Ann. Sci. ENS, to appear.
[So]
C. Sogge, Propagation of singularities and maximal functions in the plane, Inv. Mat. 104 (1991), 349–376.
CrossRefMATHMathSciNet [St]
J.J. Stokes, On a difficulty in the theory of sound, Philosophical Magazine 33 (1848), 349–356.
[Str]
W. Strauss, Weak solutions for nonlinear wave equations, Annais Acad. Brazil Ciencias 42 (1970), 645–651.
[T1]
D. Tataru, Local and global results for wave maps I, C.P.D.E 23:9-10 (1998), 1781–1793; part II to appear in AJM.
[T2]
D. Tataru, Strichartz estimates for operators with non smooth coefficients and the nonlinear wave equation, AJM, to appear; part II and III, preprints.
[W]
R. Wald, Gravitational Collapse and Cosmic Cesorship, 1997, grqc/9712055.
[Wi]
E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences, C.P.A.M. 13 (1960), 1–15.
MATH [Wol]
T. Wolff, Recent Work Connected to the Kakeya Problem, Prospects in Math. AMS, Princeton 1996.
[Wo2]
T. Wolff, A sharp bilinear restriction estimate, IMRM to appear.
[Y]
S.T. Yau, Open problems in geometry, preprint.
[Z]
A.S.T. Zadeh, Relativistic and nonrelativistic elastodynamics with small shear strain, Ann. Inst. H. Poincaré, Physique Theorique 69 (1998), 275–307.
MATH