Advertisement

Principally Quasi-Baer Ring Hulls

  • Gary F. Birkenmeier
  • Jae Keol Park
  • S. Tariq Rizvi
Part of the Trends in Mathematics book series (TM)

Abstract

We show the existence of principally (and finitely generated) right FI-extending right ring hulls for semiprime rings. From this result, we prove that right principally quasi-Baer (i.e., right p.q.-Baer) right ring hulls always exist for semiprime rings. This existence of right p.q.-Baer right ring hull for a semiprime ring unifies the result by Burgess and Raphael on the existence of a closely related unique smallest overring for a von Neumann regular ring with bounded index and the result of Dobbs and Picavet showing the existence of a weak Baer envelope for a commutative semiprime ring. As applications, we illustrate the transference of certain properties between a semiprime ring and its right p.q.-Baer right ring hull, and we explicitly describe a structure theorem for the right p.q.-Baer right ring hull of a semiprime ring with only finitely many minimal prime ideals. The existence of PP right ring hulls for reduced rings is also obtained. Further application to ring extensions such as monoid rings, matrix, and triangular matrix rings are investigated. Moreover, examples and counterexamples are provided.

Mathematics Subject Classification (2000)

Primary 16N60 Secondary 16S20 16P70 

Keywords

FI-extending right ring hulls right rings of quotients p.q.-Baer rings quasi-Baer rings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.A. Amitsur, On rings of quotients. Symp. Math. 8 Academic Press, London (1972), 149–164.Google Scholar
  2. [2]
    K. Beidar and R. Wisbauer, Strongly and properly semiprime modules and rings. Ring Theory, Proc. Ohio State-Denison Conf. (S.K. Jain and S.T. Rizvi (eds.)), World Scientific, Singapore (1993), 58–94.Google Scholar
  3. [3]
    G.F. Birkenmeier, Idempotents and completely semiprime ideals. Comm. Algebra 11 (1983), 567–580.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G.F. Birkenmeier, H.E. Heatherly, J.Y. Kim and J.K. Park, Triangular matrix representations. J. Algebra 230 (2000), 558–595.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    G.F. Birkenmeier, J.Y. Kim and J.K. Park, Quasi-Baer ring extensions and biregular rings. Bull. Austral. Math. Soc. 61 (2000), 39–52.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    G.F. Birkenmeier, J.Y. Kim and J.K. Park, On quasi-Baer rings. Algebras and Its Applications (D.V. Huynh, S.K. Jain, and S.R. López-Permouth (eds.)), Contemp. Math. 259, Amer. Math. Soc., Providence, 2000, 67–92.Google Scholar
  7. [7]
    G.F. Birkenmeier, J.Y. Kim and J.K. Park, Semicentral reduced algebras. International Symposium on Ring Theory (G.F. Birkenmeier, J.K. Park, and Y.S. Park (eds.)), Trends in Math. Birkhäuser, Boston, 2001, 67–84.Google Scholar
  8. [8]
    G.F. Birkenmeier, J.Y. Kim and J.K. Park, Polynomial extensions of Baer and quasi-Baer rings. J. Pure Appl. Algebra 259 (2001), 25–42.CrossRefMathSciNetGoogle Scholar
  9. [9]
    G.F. Birkenmeier, J.Y. Kim and J.K. Park, Principally quasi-Baer rings. Comm. Algebra 29 (2001), 639–660.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G.F. Birkenmeier, B.J. Müller and S.T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand. Comm. Algebra 30 (2002), 1395–1415.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    G.F. Birkenmeier and J.K. Park, Triangular matrix representations of normalizing extensions. J. Algebra 265 (2003), 457–477.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    G.F. Birkenmeier, J.K. Park and S.T. Rizvi, Ring hulls and applications. J. Algebra 304 (2006), 633–665.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    G.F. Birkenmeier, J.K. Park and S.T. Rizvi, The structure of rings of quotients. J. Algebra 321 (2009), 2545–2566.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    G.F. Birkenmeier, J.K. Park and S.T. Rizvi, Hulls of semiprime rings with applications to C *-algebras. J. Algebra 322 (2009), 327–352.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    G.F. Birkenmeier, J.K. Park and S.T. Rizvi, Hulls of ring extensions. Canad. Math. Bull., to appear.Google Scholar
  16. [16]
    W.D. Burgess and R.M. Raphael, On extensions of regular rings of finite index by central elements. Advances in Ring Theory (S.K. Jain and S.T. Rizvi (eds.)), Trends in Math., Birkhäuser, Boston (1997), 73–86.Google Scholar
  17. [17]
    N. Divinsky, Rings and Radicals. Univ. Toronto Press, 1965.Google Scholar
  18. [18]
    D.E. Dobbs and G. Picavet, Weak Baer going-down rings. Houston J. Math. 29 (2003), 559–581.zbMATHMathSciNetGoogle Scholar
  19. [19]
    J. Kist, Minimal prime ideals in commutative semigroups. Proc. London Math. Soc. 13 (1963), 31–50.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    T.Y. Lam, Lectures on Modules and Rings. Springer-Verlag, Berlin-Heidelberg-New York, 1999.zbMATHGoogle Scholar
  21. [21]
    J. Lambek, Lectures on Rings and Modules. Chelsea, New York, 1986.Google Scholar
  22. [22]
    J. Okniński, Semigroup Algebras. Marcel Dekker, New York, 1991.Google Scholar
  23. [23]
    K. Oshiro, On torsion free modules over regular rings. Math. J. Okayama Univ. 16 (1973), 107–114.zbMATHMathSciNetGoogle Scholar
  24. [24]
    D.S. Passman, The Algebraic Structure of Group Rings. Wiley, New York, 1977.zbMATHGoogle Scholar
  25. [25]
    L.H. Rowen, Ring Theory I. Academic Press, San Diego, 1988.zbMATHGoogle Scholar
  26. [26]
    B. Stenström, Rings of Quotients. Springer-Verlag, Berlin-Heidelberg-New York, 1975.zbMATHGoogle Scholar
  27. [27]
    Y. Utumi, On quotient rings. Osaka Math. J. 8 (1956), 1–18.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Gary F. Birkenmeier
    • 1
  • Jae Keol Park
    • 2
  • S. Tariq Rizvi
    • 3
  1. 1.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA
  2. 2.Department of MathematicsBusan National UniversityBusanSouth Korea
  3. 3.Department of MathematicsOhio State UniversityLimaUSA

Personalised recommendations