Live Vaccines and Their Role in Modern Vaccinology

  • Gordon DouganEmail author
  • David Goulding
  • Lindsay J. Hall
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Since the invention of vaccination by Jenner live vaccines have been key components of immunization programs. However, in the modern era the justification for the role of live vaccines is worth re-evaluating. Here we discuss, using specific examples, about how the use and development of live vaccines will be managed in the genomics era.


Live Vaccine Rational Attenuation Smallpox Vaccine Cholera Vaccine Shigella Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by The Wellcome Trust.


  1. 1.
    Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proceedings Baylor University 18:21–25Google Scholar
  2. 2.
    Shchelkunov SN, Resenchuk SM, Totmenin AV, Blinov VM, Marennikova SS, Sandakhchiev LS (1993) Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett 327:321–324CrossRefPubMedGoogle Scholar
  3. 3.
    Garcel A, Perino J, Crance JM, Drillien R, Garin D, Favier AL (2009) Phenotypic and genetic diversity of the traditional Lister smallpox vaccine. Vaccine 27:708–717CrossRefPubMedGoogle Scholar
  4. 4.
    Fine PE (2001) BCG: the challenge continues. Scand J Infect Dis 33:243–245CrossRefPubMedGoogle Scholar
  5. 5.
    Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523CrossRefPubMedGoogle Scholar
  6. 6.
    Vordermeier HM, Cockle PC, Whelan A, Rhodes S, Palmer N, Bakker D, Hewinson RG (1999) Development of diagnostic reagents to differentiate between Mycobacterium bovis BCG vaccination and M. bovis infection in cattle. Clin Diagn Lab Immunol 6:675–682PubMedGoogle Scholar
  7. 7.
    Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462CrossRefPubMedGoogle Scholar
  8. 8.
    Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557PubMedGoogle Scholar
  9. 9.
    Cherkasova E, Laassri M, Chizhikov V, Korotkova E, Dragunsky E, Agol VI, Chumakov K (2003) Microarray analysis of evolution of RNA viruses: evidence of circulation of virulent highly divergent vaccine-derived polioviruses. Proc Natl Acad Sci USA 100:9398–9403CrossRefPubMedGoogle Scholar
  10. 10.
    Breuer J (2004) Microarray analysis: the evolving story of oral polio vaccines. Heredity 92:3–4CrossRefPubMedGoogle Scholar
  11. 11.
    Alekshun MN, Levy SB (2006) Commensals upon us. Biochem Pharmacol 71:893–900CrossRefPubMedGoogle Scholar
  12. 12.
    Dougan G (1993) Colworth Prize Lecture. The molecular basis for the virulence of bacterial pathogens: implications for oral vaccine development. Microbiology 140(2):215–224CrossRefGoogle Scholar
  13. 13.
    Hone DM, Attridge SR, Forrest B, Morona R, Daniels D, LaBrooy JT, Bartholomeusz RC, Shearman DJ, Hackett J (1988) A galE via (Vi antigen-negative) mutant of Salmonella typhi Ty2 retains virulence in humans. Infect Immun 56:1326–1333PubMedGoogle Scholar
  14. 14.
    Silva BA, Gonzalez C, Mora GC, Cabello F (1987) Genetic characteristics of the Salmonella typhi strain Ty21a vaccine. J Infect Dis 155:1077–1078PubMedGoogle Scholar
  15. 15.
    Kopecko DJ, Sieber H, Ures JA, Furer A, Schlup J, Knof U, Collioud A, Xu D, Colburn K, Dietrich G (2009) Genetic stability of vaccine strain Salmonella Typhi Ty21a over 25 years. Int J Med Microbiol 299:233–246CrossRefPubMedGoogle Scholar
  16. 16.
    Hohmann EL, Oletta CA, Killeen KP, Miller SI (1996) phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis 173:1408–1414PubMedGoogle Scholar
  17. 17.
    Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, Cosgrove CA, Ghaem-Maghami M, Sexton A, Khan M, Brennan FR, Everest P, Wu T, Pickard D, Holden DW, Dougan G, Griffin GE, House D, Santangelo JD, Khan SA, Shea JE, Feldman RG, Lewis DJ (2002) Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun 70:3457–3467CrossRefPubMedGoogle Scholar
  18. 18.
    Khan SA, Stratford R, Wu T, McKelvie N, Bellaby T, Hindle Z, Sinha KA, Eltze S, Mastroeni P, Pickard D, Dougan G, Chatfield SN, Brennan FR (2003) Salmonella typhi and S typhimurium derivatives harbouring deletions in aromatic biosynthesis and Salmonella Pathogenicity Island-2 (SPI-2) genes as vaccines and vectors. Vaccine 21:538–548CrossRefPubMedGoogle Scholar
  19. 19.
    Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Nataro JP, Edelman R, Pickard D, Dougan G, Chatfield SN, Levine MM (1997) Safety of live oral Salmonella typhi vaccine strains with deletions in htrA and aroC aroD and immune response in humans. Infect Immun 65:452–456PubMedGoogle Scholar
  20. 20.
    O'Callaghan D, Maskell D, Liew FY, Easmon CS, Dougan G (1988) Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun 56:419–423PubMedGoogle Scholar
  21. 21.
    Levine MM, Galen J, Barry E, Noriega F, Chatfield S, Sztein M, Dougan G, Tacket C (1996) Attenuated Salmonella as live oral vaccines against typhoid fever and as live vectors. J Biotechnol 44:193–196CrossRefPubMedGoogle Scholar
  22. 22.
    Hone DM, Tacket CO, Harris AM, Kay B, Losonsky G, Levine MM (1992) Evaluation in volunteers of a candidate live oral attenuated Salmonella typhi vector vaccine. J Clin Investig 90:412–420CrossRefPubMedGoogle Scholar
  23. 23.
    Kirkpatrick BD, McKenzie R, O'Neill JP, Larsson CJ, Bourgeois AL, Shimko J, Bentley M, Makin J, Chatfield S, Hindle Z, Fidler C, Robinson BE, Ventrone CH, Bansal N, Carpenter CM, Kutzko D, Hamlet S, LaPointe C, Taylor DN (2006) Evaluation of Salmonella enterica serovar Typhi (Ty2 aroC-ssaV-) M01ZH09, with a defined mutation in the Salmonella pathogenicity island 2, as a live, oral typhoid vaccine in human volunteers. Vaccine 24:116–123CrossRefPubMedGoogle Scholar
  24. 24.
    Kabir S (2007) Cholera vaccines. Lancet Infect Dis 7:176–178, author reply 178CrossRefPubMedGoogle Scholar
  25. 25.
    Ryan ET, Calderwood SB, Qadri F (2006) Live attenuated oral cholera vaccines. Expert Rev Vaccin 5:483–494CrossRefGoogle Scholar
  26. 26.
    Phalipon A, Mulard LA, Sansonetti PJ (2008) Vaccination against shigellosis: is it the path that is difficult or is it the difficult that is the path? Microbes Infect 10:1057–1062CrossRefPubMedGoogle Scholar
  27. 27.
    Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB (2007) Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol 5:540–553CrossRefPubMedGoogle Scholar
  28. 28.
    Wilson RP, Raffatellu M, Chessa D, Winter SE, Tukel C, Baumler AJ (2008) The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cell Microbiol 10:876–890CrossRefPubMedGoogle Scholar
  29. 29.
    Sharma A, Qadri A (2004) Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci USA 101:17492–17497CrossRefPubMedGoogle Scholar
  30. 30.
    Panthel K, Meinel KM, Sevil Domenech VE, Trulzsch K, Russmann H (2008) Salmonella type III-mediated heterologous antigen delivery: a versatile oral vaccination strategy to induce cellular immunity against infectious agents and tumors. Int J Med Microbiol 298:99–103CrossRefPubMedGoogle Scholar
  31. 31.
    Khan S, Chatfield S, Stratford R, Bedwell J, Bentley M, Sulsh S, Giemza R, Smith S, Bongard E, Cosgrove CA, Johnson J, Dougan G, Griffin GE, Makin J, Lewis DJ (2007) Ability of SPI2 mutant of S. typhi to effectively induce antibody responses to the mucosal antigen enterotoxigenic E. coli heat labile toxin B subunit after oral delivery to humans. Vaccine 25:4175–4182CrossRefPubMedGoogle Scholar
  32. 32.
    Xu F, Ulmer JB (2003) Attenuated salmonella and Shigella as carriers for DNA vaccines. J Drug Target 11:481–488CrossRefPubMedGoogle Scholar
  33. 33.
    Hall LJ, Clare S, Pickard D, Clark SO, Kelly DL, El Ghany MA, Hale C, Dietrich J, Andersen P, Marsh PD, Dougan G (2009) Characterisation of a live Salmonella vaccine stably expressing the Mycobacterium tuberculosis Ag85B-ESAT6 fusion protein. Vaccine 27:6894–6904CrossRefPubMedGoogle Scholar
  34. 34.
    Roland KL, Tinge SA, Killeen KP, Kochi SK (2005) Recent advances in the development of live, attenuated bacterial vectors. Curr Opin Mol Ther 7:62–72PubMedGoogle Scholar
  35. 35.
    Sander CR, Pathan AA, Beveridge NE, Poulton I, Minassian A, Alder N, Van Wijgerden J, Hill AV, Gleeson FV, Davies RJ, Pasvol G, McShane H (2009) Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med 179:724–733CrossRefPubMedGoogle Scholar
  36. 36.
    Breton M, Zhao C, Ouellette M, Tremblay MJ, Papadopoulou B (2007) A recombinant non-pathogenic Leishmania vaccine expressing human immunodeficiency virus 1 (HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1 infection. J Gen Virol 88:217–225CrossRefPubMedGoogle Scholar
  37. 37.
    VanCott JL, Staats HF, Pascual DW, Roberts M, Chatfield SN, Yamamoto M, Coste M, Carter PB, Kiyono H, McGhee JR (1996) Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages, and derived cytokines following oral immunization with live recombinant Salmonella. J Immunol 156:1504–1514PubMedGoogle Scholar
  38. 38.
    Evans DT, Chen LM, Gillis J, Lin KC, Harty B, Mazzara GP, Donis RO, Mansfield KG, Lifson JD, Desrosiers RC, Galan JE, Johnson RP (2003) Mucosal priming of simian immunodeficiency virus-specific cytotoxic T-lymphocyte responses in rhesus macaques by the Salmonella type III secretion antigen delivery system. J Virol 77:2400–2409CrossRefPubMedGoogle Scholar
  39. 39.
    Schoen C, Stritzker J, Goebel W, Pilgrim S (2004) Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 294:319–335CrossRefPubMedGoogle Scholar
  40. 40.
    Hohmann EL, Oletta CA, Loomis WP, Miller SI (1995) Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenicity. Proc Natl Acad Sci USA 92:2904–2908CrossRefPubMedGoogle Scholar
  41. 41.
    Chatfield SN, Charles IG, Makoff AJ, Oxer MD, Dougan G, Pickard D, Slater D, Fairweather NF (1992) Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Biotechnology (N Y) 10:888–892CrossRefGoogle Scholar
  42. 42.
    Radosevic K, Rodriguez A, Lemckert A, Goudsmit J (2009) Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects. Expert Rev Vaccin 8:577–592CrossRefGoogle Scholar
  43. 43.
    Devico AL, Fouts TR, Shata MT, Kamin-Lewis R, Lewis GK, Hone DM (2002) Development of an oral prime-boost strategy to elicit broadly neutralizing antibodies against HIV-1. Vaccine 20:1968–1974CrossRefPubMedGoogle Scholar
  44. 44.
    Tartz S, Russmann H, Kamanova J, Sebo P, Sturm A, Heussler V, Fleischer B, Jacobs T (2008) Complete protection against P. berghei malaria upon heterologous prime/boost immunization against circumsporozoite protein employing Salmonella type III secretion system and Bordetella adenylate cyclase toxoid. Vaccine 26:5935–5943CrossRefPubMedGoogle Scholar
  45. 45.
    Whelan KT, Pathan AA, Sander CR, Fletcher HA, Poulton I, Alder NC, Hill AV, McShane H (2009) Safety and immunogenicity of boosting BCG vaccinated subjects with BCG: comparison with boosting with a new TB vaccine, MVA85A. PLoS ONE 4:e5934CrossRefPubMedGoogle Scholar
  46. 46.
    Stratford R, Douce G, Bowe F, Dougan G (2001) A vaccination strategy incorporating DNA priming and mucosal boosting using tetanus toxin fragment C (TetC). Vaccine 20:516–525CrossRefPubMedGoogle Scholar
  47. 47.
    Agorio C, Schreiber F, Sheppard M, Mastroeni P, Fernandez M, Martinez MA, Chabalgoity JA (2007) Live attenuated Salmonella as a vector for oral cytokine gene therapy in melanoma. J Gene Med 9:416–423CrossRefPubMedGoogle Scholar
  48. 48.
    Al-Ramadi BK, Fernandez-Cabezudo MJ, El-Hasasna H, Al-Salam S, Attoub S, Xu D, Chouaib S (2008) Attenuated bacteria as effectors in cancer immunotherapy. Ann NY Acad Sci 1138:351–357CrossRefPubMedGoogle Scholar
  49. 49.
    Fernandez-Cabezudo MJ, Mechkarska M, Azimullah S, Al-Ramadi BK (2009) Modulation of macrophage proinflammatory functions by cytokine-expressing Salmonella vectors. Clin Immunol 130:51–60, OrlandoFlaCrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2011

Authors and Affiliations

  • Gordon Dougan
    • 1
    Email author
  • David Goulding
    • 1
  • Lindsay J. Hall
    • 2
  1. 1.The Wellcome Trust Sanger InstituteCambridgeUK
  2. 2.Alimentary Pharmabiotic Centre, Biosciences InstituteUniversity College CorkCorkIreland

Personalised recommendations