Gene therapy for myositis

  • Hans H. Jung
  • Juliane Bremer
  • Michael Weller
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

The inflammatory myopathies, polymyositis (PM), dermatomyositis (DM) and inclusion body myositis (IBM), lead to moderate to severe muscle weakness and are characterised by the presence of endomysial inflammation. Each entity has unique clinical, immunopathological and histological characteristics which are associated with different responses to therapies and prognosis. In DM and PM, first-line treatment options include oral corticosteroids, other immunosuppressant drugs, and intravenous immunoglobulins. Patients with IBM, by contrast, usually show a poor or no response to immunomodulatory treatments. Patients with IBM and non-responding patients with PM and DM are candidates for alternative treatment options and experimental therapies including gene therapy. The genetic treatment of inflammatory muscle disorders could involve at least two different strategies: first, to ectopically express local immune modulatory, notably immunosuppressive molecules which would limit inflammation and autoimmunity more effectively than systemic immunosuppressive treatment; second, strategies to promote the repair or allow for the replacement of damaged muscle might be envisaged. Immunosuppressive molecules might include HLA-G, a non-classical major histocompatibility (MHC) Class I molecule, or other cell surface molecules which negatively modulate immune effector cell function. Muscle regeneration might be promoted by myotrophic factors including utrophin or insulin-like growth factors. In addition, cell-based therapies using stem cells or myoblasts might have a therapeutic potential in neuromuscular disorders.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalakas MC (1991) Polymyositis, dermatomyositis and inclusion-body myositis. N Engl J Med 325: 1487–1498.CrossRefPubMedGoogle Scholar
  2. 2.
    Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet 362: 971–982.CrossRefPubMedGoogle Scholar
  3. 3.
    Needham M, Mastaglia FL (2007) Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol 6: 620–631.CrossRefPubMedGoogle Scholar
  4. 4.
    Wiendl H, Hohlfeld R, Kieseier BC (2005) Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol 26: 373–380.CrossRefPubMedGoogle Scholar
  5. 5.
    Gold R, Dalakas MC, Toyka KV (2003) Immunotherapy in autoimmune neuromuscular disorders. Lancet Neurol 2: 22–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Hewer E, Goebel HH (2008) Myopathology of non-infectious inflammatory myopathies — the current status. Pathol Res Pract 204: 609–623.CrossRefPubMedGoogle Scholar
  7. 7.
    Greenberg SA, Amato AA (2004) Uncertainties in the pathogenesis of adult dermatomyositis. Curr Opin Neurol 17: 359–364.CrossRefPubMedGoogle Scholar
  8. 8.
    Greenberg SA, Sanoudou D, Haslett JN, Kohane IS, Kunkel LM, Beggs AH, Amato AA (2002) Molecular profiles of inflammatory myopathies. Neurology 59: 1170–1182.PubMedGoogle Scholar
  9. 9.
    Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R, Barohn RJ, Saperstein DS, Briemberg HR, Ericsson M et al. (2005) Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 57: 664–678.CrossRefPubMedGoogle Scholar
  10. 10.
    Boonstra A, Asselin-Paturel C, Gilliet M, Crain C, Trinchieri G, Liu YJ, O’Garra A (2003) Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197: 101–109.CrossRefPubMedGoogle Scholar
  11. 11.
    Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu YJ, Gilliet M (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202: 135–143.CrossRefPubMedGoogle Scholar
  12. 12.
    Jego G, Pascual V, Palucka AK, Banchereau J (2005) Dendritic cells control B cell growth and differentiation. Curr Dir Autoimmun 8: 124–139.CrossRefPubMedGoogle Scholar
  13. 13.
    Greenberg SA (2007) Proposed immunologic models of the inflammatory myopathies and potential therapeutic implications. Neurology 69: 2008–2019.CrossRefPubMedGoogle Scholar
  14. 14.
    Fuchsberger M, Hochrein H, O’Keeffe M (2005) Activation of plasmacytoid dendritic cells. Immunol Cell Biol 83: 571–577.CrossRefPubMedGoogle Scholar
  15. 15.
    Leff RL, Love LA, Miller FW, Greenberg SJ, Klein EA, Dalakas MC, Plotz PH (1993) Viruses in idiopathic inflammatory myopathies: absence of candidate viral genomes in muscle. Lancet 339: 1192–1195.CrossRefGoogle Scholar
  16. 16.
    Karpati G, Pouliot Y, Carpenter S (1988) Expression of immunoreactive major histocompatibility complex products in human skeletal muscles. Ann Neurol 23: 64–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Emslie-Smith AM, Arahata K, Engel AG (1989) Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum Pathol 20: 224–231.CrossRefPubMedGoogle Scholar
  18. 18.
    Wiendl H, Mitsdoerffer M, Hofmeister V, Wischhusen J, Weiss EH, Dichgans J, Lochmuller H, Hohlfeld R, Melms A, Weller M (2003) The non-classical MHC molecule HLA-G protects human muscle cells from immune-mediated lysis: implications for myoblast transplantation and gene therapy. Brain 126: 176–185.CrossRefPubMedGoogle Scholar
  19. 19.
    Lundberg I, Brengman JM, Engel AG (1995) Analysis of cytokine expression in muscle in inflammatory myopathies, Duchenne dystrophy, and non-weak controls. J Neuroimmunol 63: 9–16.CrossRefPubMedGoogle Scholar
  20. 20.
    De Bleecker JL, De Paepe B, Vanwalleghem IE, Schroder JM (2002) Differential expression of chemokines in inflammatory myopathies. Neurology 58: 1779–1785.PubMedGoogle Scholar
  21. 21.
    Figarella-Branger D, Civatte M, Bartoli C, Pellissier JF (2003) Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle Nerve 28: 659–682.CrossRefPubMedGoogle Scholar
  22. 22.
    Choi YC, Dalakas MC (2000) Expression of matrix metalloproteinases in the muscle of patients with inflammatory myopathies. Neurology 54: 65–71.PubMedGoogle Scholar
  23. 23.
    Dalakas MC (2006) Therapeutic targets in patients with inflammatory myopathies: present approaches and a look to the future. Neuromuscul Disord 16: 223–236.CrossRefPubMedGoogle Scholar
  24. 24.
    Dalakas MC (2002) Muscle biopsy findings in inflammatory myopathies. Rheum Dis Clin North Am 28: 779–798, vi.CrossRefPubMedGoogle Scholar
  25. 25.
    Badrising UA, Schreuder GM, Giphart MJ, Geleijns K, Verschuuren JJ, Wintzen AR, Maat-Schieman ML, van Doorn P, van Engelen BG, Faber CG et al. (2004) Associations with autoimmune disorders and HLA class I and II antigens in inclusion body myositis. Neurology 63: 2396–2398.PubMedGoogle Scholar
  26. 26.
    Price P, Witt C, Allcock R, Sayer D, Garlepp M, Kok CC, French M, Mallal S, Christiansen F (1999) The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol Rev 167: 257–274.CrossRefPubMedGoogle Scholar
  27. 27.
    Askanas V, Engel WK (1998) Sporadic inclusion-body myositis and hereditary inclusion-body myopathies: current concepts of diagnosis and pathogenesis. Curr Opin Rheumatol 10: 530–542.CrossRefPubMedGoogle Scholar
  28. 28.
    Sugarman MC, Yamasaki TR, Oddo S, Echegoyen JC, Murphy MP, Golde TE, Jannatipour M, Leissring MA, LaFerla FM (2002) Inclusion body myositis-like phenotype induced by transgenic overexpression of beta APP in skeletal muscle. Proc Natl Acad Sci USA 99: 6334–6339.CrossRefPubMedGoogle Scholar
  29. 29.
    Kitazawa M, Trinh DN, LaFerla FM (2008) Inflammation induces tau pathology in inclusion body myositis model via glycogen synthase kinase-3beta. Ann Neurol 64: 15–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Wiendl H (2008) Idiopathic inflammatory myopathies: current and future therapeutic options. Neurotherapeutics 5: 548–557.CrossRefPubMedGoogle Scholar
  31. 31.
    Dalakas MC (2003) Therapeutic approaches in patients with inflammatory myopathies. Semin Neurol 23: 199–206.CrossRefPubMedGoogle Scholar
  32. 32.
    Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 90: 8673–8677.CrossRefPubMedGoogle Scholar
  33. 33.
    van Deutekom JC, van Ommen GJ (2003) Advances in Duchenne muscular dystrophy gene therapy. Nat Rev Genet 4: 774–783.CrossRefPubMedGoogle Scholar
  34. 34.
    Arnett AL, Chamberlain JR, Chamberlain JS (2009) Therapy for neuromuscular disorders. Curr Opin Genet Dev 19: 290–297.CrossRefPubMedGoogle Scholar
  35. 35.
    Murakami T, Nishi T, Kimura E, Goto T, Maeda Y, Ushio Y, Uchino M, Sunada Y (2003) Fulllength dystrophin cDNA transfer into skeletal muscle of adult mdx mice by electroporation. Muscle Nerve 27: 237–241.CrossRefPubMedGoogle Scholar
  36. 36.
    Lu QL, Mann CJ, Lou F, Bou-Gharios G, Morris GE, Xue SA, Fletcher S, Partridge TA, Wilton SD (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9: 1009–1014.CrossRefPubMedGoogle Scholar
  37. 37.
    Gollins H, McMahon J, Wells KE, Wells DJ (2003) High-efficiency plasmid gene transfer into dystrophic muscle. Gene Ther 10: 504–512.CrossRefPubMedGoogle Scholar
  38. 38.
    van Vliet L, de Winter CL, van Deutekom JC, van Ommen GJ, Aartsma-Rus A (2008) Assessment of the feasibility of exon 45–55 multiexon skipping for Duchenne muscular dystrophy. BMC Med Genet 9: 105.CrossRefPubMedGoogle Scholar
  39. 39.
    Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, Davies K (1998) Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4: 1441–1444.CrossRefPubMedGoogle Scholar
  40. 40.
    Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to-positive by injection of normal myoblasts. Nature 337: 176–179.CrossRefPubMedGoogle Scholar
  41. 41.
    Gussoni E, Pavlath GK, Lanctot AM, Sharma KR, Miller RG, Steinman L, Blau HM (1992) Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356: 435–438.CrossRefPubMedGoogle Scholar
  42. 42.
    Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R et al. (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333: 832–838.CrossRefPubMedGoogle Scholar
  43. 43.
    Gussoni E, Blau HM, Kunkel LM (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3: 970–977.CrossRefPubMedGoogle Scholar
  44. 44.
    Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23: 845–856.CrossRefPubMedGoogle Scholar
  45. 45.
    Mouly V, Aamiri A, Périé S, Mamchaoui K, Barani A, Bigot A, Bouazza B, François V, Furling D, Jacquemin V et al. (2005) Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol 24: 128–133.PubMedGoogle Scholar
  46. 46.
    Périé S, Mamchaoui K, Mouly V, Blot S, Bouazza B, Thornell LE, St Guily JL, Butler-Browne G (2006) Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: Therapeutic perspectives of autologous myoblast transplantation. Neuromuscul Disord 16: 770–781.CrossRefPubMedGoogle Scholar
  47. 47.
    Singleton JR, Feldman EL (2001) Insulin-like growth factor-I in muscle metabolism and myotherapies. Neurobiol Dis 8: 541–554.CrossRefPubMedGoogle Scholar
  48. 48.
    Wiendl H, Behrens L, Maier S, Johnson MA, Weiss EH, Hohlfeld R (2000) Muscle fibers in inflammatory myopathies and cultured myoblasts express the nonclassical major histocompatibility antigen HLA-G. Ann Neurol 48: 679–684.CrossRefPubMedGoogle Scholar
  49. 49.
    Hohlfeld R, Engel AG (1994) The immunobiology of muscle. Immunol Today 15: 269–274.CrossRefPubMedGoogle Scholar
  50. 50.
    Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G et al. (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29: 83–87.CrossRefPubMedGoogle Scholar
  51. 51.
    Salama I, Hinderlich S, Shlomai Z, Eisenberg I, Krause S, Yarema K, Argov Z, Lochmuller H, Reutter W, Dabby R et al. (2005) No overall hyposialylation in hereditary inclusion body myopathy myoblasts carrying the homozygous M712T GNE mutation. Biochem Biophys Res Commun 328: 221–226.CrossRefPubMedGoogle Scholar
  52. 52.
    Raju R, Dalakas MC (2005) Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 128: 1887–1896.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2010

Authors and Affiliations

  • Hans H. Jung
    • 1
  • Juliane Bremer
    • 2
  • Michael Weller
    • 1
  1. 1.Department of NeurologyUniversity Hospital ZürichZürichSwitzerland
  2. 2.Institute of Neuropathology, Department of PathologyUniversity Hospital ZürichZürichSwitzerland

Personalised recommendations