C7 Anti-infective activity of immunomodulators

  • K. Noel MasihiEmail author


Infectious diseases continue to impact human morbidity and mortality. Every individual is vulnerable to microbial infections regardless of socioeconomic status, gender, age group or ethnic background. There has been an explosion of international air travel with an estimated 2 billion passengers travelling on commercial airlines every year. The rapid expansion of globalization and mass tourism has facilitated the spread of disease-causing pathogens from one continent to another at unprecedented rates.


Bacterial Vaginosis Chronic Granulomatous Disease Tumor Necrosis Factor Synthetic Immunomodulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Taylor PW, Stapleton PD, Paul LJ. New ways to treat bacterial infections. Drug Discov Today 2002; 7: 1086–91PubMedCrossRefGoogle Scholar
  2. 2.
    Amyes SGB. The rise in bacterial resistance is partly because there have been no new classes of antibiotics since the 1960s. Br Med J 2000; 320: 199–200CrossRefGoogle Scholar
  3. 3.
    Hengel H, Masihi KN. Combinatorial immunotherapies for infectious diseases. Int Immunopharmacol 2003; 3: 1–9CrossRefGoogle Scholar
  4. 4.
    Kayser O, Masihi KN, Kiderlen AF. Natural products and synthetic compounds as immunomodulators. Expert Rev Anti Infect Ther 2003; 1: 319–35PubMedCrossRefGoogle Scholar
  5. 5.
    Masihi KN. Immunomodulatory agents for prophylaxis and therapy of infections. Int J Antimicrob Agents 2000; 14: 181–91PubMedCrossRefGoogle Scholar
  6. 6.
    Masihi KN. Fighting infection using immunomodulatory agents. Expert Opin Biol Ther 2001; 1: 641–53PubMedCrossRefGoogle Scholar
  7. 7.
    Luxon BA, Grace M, Brassard D, Bordens R. Pegylated interferons for the treatment of chronic hepatitis C infection. Clin Ther 2002; 24: 1363–83PubMedCrossRefGoogle Scholar
  8. 8.
    Koliouskas D, Sidiropoulos I, Masmanidou M, Dokas S, Ziakas A. Comparative analysis of Peg-interferon alpha-2b and lamivudine in the treatment of chronic hepatitis B patients: preliminary results. J Hepatol 2002; 36: 237–38CrossRefGoogle Scholar
  9. 9.
    Lau GK, Piratvisuth T, Luo KX, Marcellin P, Thongsawat S, Cooksley G et al. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med 2005; 352: 2682–95PubMedCrossRefGoogle Scholar
  10. 10.
    Villa E, Lei B, Taliani G, Graziosi A, Critelli R, Luongo M. Pretreatment with pegylated interferon prevents emergence of lamivudine mutants in lamivudine-naive patients: a pilot study. Antivir Ther 2009; 14: 1081–7PubMedCrossRefGoogle Scholar
  11. 11.
    Hui CK, Lau GK. Peginterferon-alpha2a (40 kDa) (Pegasys) for hepatitis B. Expert Rev Anti Infect Ther 2005; 3: 495–504PubMedCrossRefGoogle Scholar
  12. 12.
    Goldstein AL, Goldstein AL. From lab to bedside: emerging clinical applications of thymosin alpha1. Expert Opin Biol Ther 2009; 9: 593–608PubMedCrossRefGoogle Scholar
  13. 13.
    Sugahara S, Ichida T, Yamagiwa S, Ishikawa T, Uehara K, Yoshida Y et al. Thymosin-alpha1 increases intrahepatic NKT cells and CTLs in patients with chronic hepatitis B. Hepatol Res 2002; 24: 346–54PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang YY, Chen EQ, Yang J, Duan YR, Tang H. Treatment with lamivudine versus lamivudine and thymosin alpha-1 for e antigen-positive chronic hepatitis B patients: a meta-analysis. Virol J 2009; 6: 63PubMedCrossRefGoogle Scholar
  15. 15.
    Garaci E, Favalli C, Pica F, Sinibaldi VP, Palamara AT, Matteucci C et al. Thymosin alpha 1: from bench to bedside. Ann NY Acad Sci 2007; 1112: 225–34PubMedCrossRefGoogle Scholar
  16. 16.
    Pimstone NR, Canio JB, Chiang MH. Ribavirin/interferon -2b therapy is very effective in the treatment of chronic hepatitis C genotype 2 and 3 patients who have failed to respond virologically to IFN monotherapy. Gastroenterology 2001; 120: A-382Google Scholar
  17. 17.
    Rajender R, Modi MW, Pedder S. Use of peginterferon alfa-2a (40 KD) [Pegasys(R)] for the treatment of hepatitis C. Adv Drug Deliv Rev 2002; 54: 571–86CrossRefGoogle Scholar
  18. 18.
    Welch W, Foote M. The use of Filgrastim in AIDS-related neutropenia. J Hematother Stem Cell Res 1999; Suppl 1: S9–16Google Scholar
  19. 19.
    Kuritzkes DR, Parenti D, Ward DJ, Rachlis A, Wong RJ, Mallon KP et al. Filgrastim prevents severe neutropenia and reduces infective morbidity in patients with advanced HIV infection: results of a randomized, multicenter, controlled trial. G-CSF 930101 Study Group. AIDS 1998; 12: 65–74Google Scholar
  20. 20.
    Dubreuil-Lemaire ML, Gori A, Vittecoq D, Panelatti G, Tharaux F, Palisses R et al. Lenograstim for the treatment of neutropenia in patients receiving ganciclovir for cytomegalovirus infection: a randomised, placebocontrolled trial in AIDS patients. Eur J Haematol 2000; 65: 337–43PubMedCrossRefGoogle Scholar
  21. 21.
    Rodriguez-Adrian LJ, Grazziutti ML, Rex JH, Anaissie EJ. The potential role of cytokine therapy for fungal infections in patients with cancer: is recovery from neutropenia all that is needed? Clin Infect Dis 1998; 26: 1270–78PubMedCrossRefGoogle Scholar
  22. 22.
    Quinn TC, Overbaugh J. HIV/AIDS in women: an expanding epidemic. Science 2005; 308: 1582–83PubMedCrossRefGoogle Scholar
  23. 23.
    Heeney JL. The critical role of CD4(+) T-cell help in immunity to HIV. Vaccine 2002; 20: 1961–63PubMedCrossRefGoogle Scholar
  24. 24.
    Dragic T. An overview of the determinants of CCR5 and CXCR4 co-receptor function. J Gen Virol 2001; 82: 1807–14PubMedGoogle Scholar
  25. 25.
    Lehner T. The role of CCR5 chemokine ligands and antibodies to CCR5 coreceptors in preventing HIV infection. Trends Immunol 2002; 23: 347–51PubMedCrossRefGoogle Scholar
  26. 26.
    Kazmierski WM, Boone L, Lawrence W, Watson C, Kenakin T. CCR5 chemokine receptors: gatekeepers of HIV-1 infection. Curr Drug Targets Infect Disord 2002; 2: 265–78PubMedCrossRefGoogle Scholar
  27. 27.
    Wetzel MA, Steele AD, Henderson EE, Rogers TJ. The effect of X4 and R5 HIV-1 on C, C-C, and C-X-C chemokines during the early stages of infection in human PBMCs. Virology 2002; 292: 6–15PubMedCrossRefGoogle Scholar
  28. 28.
    Fernandez EJ, Lolis E. Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 2002 ; 42 : 469–99PubMedCrossRefGoogle Scholar
  29. 29.
    Lusso P. HIV and chemokines: implications for therapy and vaccine. Vaccine 2002; 20: 1964–67PubMedCrossRefGoogle Scholar
  30. 30.
    Onuffer JJ, Horuk R. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol Sci 2002; 23: 459–67PubMedCrossRefGoogle Scholar
  31. 31.
    Proudfoot AE, Power CA, Rommel C, Wells TN. Strategies for chemokine antagonists as therapeutics. Semin Immunol 2003; 15: 57–65PubMedCrossRefGoogle Scholar
  32. 32.
    Princen K, Hatse S, Vermeire K, Aquaro S, De Clercq E, Gerlach LO et al. Inhibition of human immuno- deficiency virus replication by a dual CCR5/CXCR4 antagonist. J Virol 2004; 78: 12996–13006PubMedCrossRefGoogle Scholar
  33. 33.
    Hendrix CW, Flexner C, MacFarland RT, Giandomenico C, Fuchs EJ, Redpath E et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44: 1667–73PubMedCrossRefGoogle Scholar
  34. 34.
    De CE. Potential clinical applications of the CXCR4 antagonist bicyclam AMD3100. Mini Rev Med Chem 2005; 5: 805–24CrossRefGoogle Scholar
  35. 35.
    Amella CA, Sherry B, Shepp DH, Schmidtmayerova H. Macrophage inflammatory protein 1alpha inhibitsGoogle Scholar
  36. 36.
    postentry steps of human immunodeficiency virus type 1 infection via suppression of intracellular cyclicGoogle Scholar
  37. 37.
    AMP. J Virol 2005; 79: 5625–31Google Scholar
  38. 38.
    Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW. DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 2002; 100: 1153–59PubMedCrossRefGoogle Scholar
  39. 39.
    Rusconi S, La Seta C, Citterio P, Bulgheroni E, Croce F, Herrmann SH et al. Combination of CCR5 and CXCR4 inhibitors in therapy of human immunodeficiency virus type 1 infection: in vitro studies of mixed virus infections. J Virol 2000; 74: 9328–32PubMedCrossRefGoogle Scholar
  40. 40.
    Gaertner H, Cerini F, Escola JM, Kuenzi G, Melotti A, Offord R et al. Highly potent, fully recombinant anti- HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci USA 2008; 105: 17706–11PubMedCrossRefGoogle Scholar
  41. 41.
    Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res 2009; 26: 502–11PubMedCrossRefGoogle Scholar
  42. 42.
    Gaertner H, Offord R, Botti P, Kuenzi G, Hartley O. Semisynthetic analogues of PSC-RANTES, a potent anti-HIV protein. Bioconjug Chem 2008; 19: 480–49PubMedCrossRefGoogle Scholar
  43. 43.
    Ting PT, Koo JY. Use of etanercept in human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) patients. Int J Dermatol 2006; 45: 689–92PubMedCrossRefGoogle Scholar
  44. 44.
    Johnson L, Jarvis JN, Wilkins EG, Hay PE. Thalidomide treatment for refractory HIV-associated colitis: a case series. Clin Infect Dis 2008; 47: 133–6PubMedCrossRefGoogle Scholar
  45. 45.
    Stary G, Kohrgruber N, Herneth AM, Gaiger A, Stingl G, Rieger A. Complete regression of HIV-associated multi centric Castleman disease treated with rituximab and thalidomide. AIDS 2008; 19; 22: 1232–34CrossRefGoogle Scholar
  46. 46.
    Listing J, Strangfeld A, Kary S, Rau R, von Hinueber U, Stoyanova-Scholz M et al. Infections in patients with rheumatoid arthritis treated with biologic agents. Arthritis Rheum 2005; 52: 3403–12PubMedCrossRefGoogle Scholar
  47. 47.
    Strangfeld A, Listing J. Infection and musculoskeletal conditions: Bacterial and opportunistic infections during anti-TNF therapy. Best Pract Res Clin Rheumatol 2006; 20: 1181–95PubMedCrossRefGoogle Scholar
  48. 48.
    Tsiodras S, Samonis G, Boumpas DT, Kontoyiannis DP. Fungal infections complicating tumor necrosis factor alpha blockade therapy. Mayo Clin Proc 2008; 83: 181–94PubMedCrossRefGoogle Scholar
  49. 49.
    Gao H, Evans TW, Finney SJ. Bench-to-bedside review: sepsis, severe sepsis and septic shock – does the nature of the infecting organism matter? Crit Care 2008; 12: 213PubMedCrossRefGoogle Scholar
  50. 50.
    Lynn M, Rossignol DP, Wheeler JL, Kao RJ, Perdomo CA, Noveck R et al. Blocking of responses to endotoxin by E5564 in healthy volunteers with experimental endotoxemia. J Infect Dis 2003; 187: 631–39PubMedCrossRefGoogle Scholar
  51. 51.
    Stanley MA. Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 2002; 27: 571–77PubMedCrossRefGoogle Scholar
  52. 52.
    Alignani D, Maletto B, Liscovsky M, Ropolo A, Moron G, Pistoresi-Palencia MC. Orally administered OVA/CpGODN induces specific mucosal and systemic immune response in young and aged mice. J Leukoc Biol 2005; 77: 898–05PubMedCrossRefGoogle Scholar
  53. 53.
    Weeratna RD, Brazolot Millan CL, McCluskie MJ, Davis HL. CpG ODN can re-direct the Th bias of established Th2 immune responses in adult and young mice. FEMS Immunol Med Microbiol 2001; 32: 65–71Google Scholar
  54. 54.
    Krieg AM, Davis HL. Enhancing vaccines with immune stimulatory CpG DNA. Curr Opin Mol Ther 2001; 3: 15–24PubMedGoogle Scholar
  55. 55.
    Cooper CL, Davis HL, Morris ML, Efler SM, Adhami MA, Krieg AM et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix- B HBV vaccine in healthy adults: a double-blind phase I/II study. J Clin Immunol 2004; 24: 693–701PubMedCrossRefGoogle Scholar
  56. 56.
    Vicari AP, Schmalbach T, Lekstrom-Himes J, Morris ML, Al-Adhami MJ, Laframboise C et al. Safety, pharmacokinetics and immune effects in normal volunteers of CPG 10101 (ACTILON), an investigational synthetic toll-like receptor 9 agonist. Antivir Ther 2007; 12: 741–51PubMedGoogle Scholar
  57. 57.
    Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev 2006; 19: 491–11PubMedCrossRefGoogle Scholar
  58. 58.
    Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 2006; 18: 24–30PubMedCrossRefGoogle Scholar
  59. 59.
    Kruse T, Kristensen HH. Using antimicrobial host defense peptides as anti-infective and immunomodulatory agents. Expert Rev Anti Infect Ther 2008; 6: 887–95PubMedCrossRefGoogle Scholar
  60. 60.
    Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006; 24: 1551–57PubMedCrossRefGoogle Scholar
  61. 61.
    Holzl MA, Hofer J, Steinberger P, Pfistershammer K, Zlabinger GJ. Host antimicrobial proteins as endogenous immunomodulators. Immunol Lett 2008; 119: 4–11PubMedCrossRefGoogle Scholar
  62. 62.
    Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A et al. An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 2007; 25: 465–72PubMedCrossRefGoogle Scholar
  63. 63.
    Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 2006; 306: 27–66PubMedCrossRefGoogle Scholar
  64. 64.
    Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002; 14: 96–102PubMedCrossRefGoogle Scholar
  65. 65.
    Furci L, Sironi F, Tolazzi M, Vassena L, Lusso P. Alphadefensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4. Blood 2007; 109: 2928–35PubMedGoogle Scholar
  66. 66.
    Trabattoni D, Caputo SL, Maffeis G, Vichi F, Biasin M, Pierotti P et al. Human alpha defensin in HIV-exposed but uninfected individuals. J Acquir Immune Defic Syndr 2004; 35: 455–63PubMedCrossRefGoogle Scholar
  67. 67.
    Kuhn L, Trabattoni D, Kankasa C, Semrau K, Kasonde P, Lissoni F et al. Alpha-defensins in the prevention of HIV transmission among breastfed infants. J Acquir Immune Defic Syndr 2005; 39: 138–42PubMedGoogle Scholar
  68. 68.
    Zapata W, Rodriguez B, Weber J, Estrada H, Quinones- Mateu ME et al. Increased levels of human betadefensins mRNA in sexually HIV-1 exposed but uninfected individuals. Curr HIV Res 2008; 6: 531–38Google Scholar
  69. 69.
    Garzino-Demo A. Chemokines and defensins as HIV suppressive factors: an evolving story. Curr Pharm Des 2007; 13: 163–72PubMedCrossRefGoogle Scholar
  70. 70.
    Ricci E, Malacrida S, Zanchetta M, Montagna M, Giaquinto C, De RA. Role of beta-defensin-1 polymorUncorrectedGoogle Scholar
  71. 71.
    Proofphisms in mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr 2009; 51: 13–19Google Scholar
  72. 72.
    Venkataraman N, Cole AL, Ruchala P, Waring AJ, Lehrer RI, Stuchlik O et al. Reawakening retrocyclins: ancestral human defensins active against HIV-1. PLoS Biol 2009; 7: e95PubMedCrossRefGoogle Scholar
  73. 73.
    Doss M, White MR, Tecle T, Gantz D, Crouch EC, Jung G et al. Interactions of alpha-, beta-, and theta-defensins with influenza A virus and surfactant protein D. J Immunol 2009; 182: 7878–87PubMedCrossRefGoogle Scholar
  74. 74.
    Chong KT, Thangavel RR, Tang X. Enhanced expression of murine beta-defensins (MBD-1, -2, -3, and −4) in upper and lower airway mucosa of influenza virus infected mice. Virology 2008; 380: 136–43PubMedCrossRefGoogle Scholar
  75. 75.
    Salvatore M, Garcia-Sastre A, Ruchala P, Lehrer RI, Chang T, Klotman ME. alpha-Defensin inhibits influenza virus replication by cell-mediated mechanism(s). J Infect Dis 2007; 196: 835–43PubMedCrossRefGoogle Scholar
  76. 76.
    Dugan AS, Maginnis MS, Jordan JA, Gasparovic ML, Manley K, Page R et al. Human alpha-defensins inhibit BK virus infection by aggregating virions and blocking binding to host cells. J Biol Chem 2008; 283: 31125–32PubMedCrossRefGoogle Scholar
  77. 77.
    Smith JG, Nemerow GR. Mechanism of adenovirus neutralization by Human alpha-defensins. Cell Host Microbe 2008; 3: 11–19PubMedCrossRefGoogle Scholar
  78. 78.
    Hazrati E, Galen B, Lu W, Wang W, Ouyang Y, Keller MJ et al. Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 2006; 177: 8658–66PubMedGoogle Scholar
  79. 79.
    Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H et al. AS04, an aluminum saltand TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 2009; 183: 6186–97PubMedCrossRefGoogle Scholar
  80. 80.
    Boukhvalova MS, Prince GA, Soroush L, Harrigan DC, Vogel SN, Blanco JC. The TLR4 agonist, monophosphoryl lipid A, attenuates the cytokine storm associated with respiratory syncytial virus vaccine-enhanced disease. Vaccine 2006; 24: 5027–35PubMedCrossRefGoogle Scholar
  81. 81.
    Hessle C, Hanson LA, Wold AE. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Clin Exp Immunol 1999; 116: 276–82PubMedCrossRefGoogle Scholar
  82. 82.
    Yasui H, Shida K, Matsuzaki T, Yokokura T. Immunomodulatory function of lactic acid bacteria. Antonie Van Leeuwenhoek 1999; 76: 383–89PubMedCrossRefGoogle Scholar
  83. 83.
    Lomax AR, Calder PC. Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr Pharm Des 2009; 15: 1428–1518PubMedCrossRefGoogle Scholar
  84. 84.
    Minocha A. Probiotics for preventive health. Nutr Clin Pract 2009; 24: 227–41PubMedCrossRefGoogle Scholar
  85. 85.
    Rohde CL, Bartolini V, Jones N. The use of probiotics in the prevention and treatment of antibiotic-associated diarrhea with special interest in Clostridium difficileassociated diarrhea. Nutr Clin Pract 2009; 24: 33–40PubMedCrossRefGoogle Scholar
  86. 86.
    Sanz Y, Nadal I, Sanchez E. Probiotics as drugs against human gastrointestinal infections. Recent Pat Antiinfect Drug Discov 2007; 2: 148–56PubMedCrossRefGoogle Scholar
  87. 87.
    Reid G. Probiotic lactobacilli for urogenital health in women. J Clin Gastroenterol 2008; 42 Suppl 3: S234–36PubMedCrossRefGoogle Scholar
  88. 88.
    Cribby S, Taylor M, Reid G. Vaginal microbiota and the use of probiotics. Interdiscip Perspect Infect Dis 2008; 2008: 256490PubMedGoogle Scholar
  89. 89.
    Martinez RC, Franceschini SA, Patta MC, Quintana SM, Gomes BC, De Martinis EC et al. Improved cure of bacterial vaginosis with single dose of tinidazole (2 g), Lactobacillus rhamnosus GR-1, and Lactobacillus reuteri RC-14: a randomized, double-blind, placebocontrolled trial. Can J Microbiol 2009; 55: 133–38PubMedCrossRefGoogle Scholar
  90. 90.
    Wallace B. Clinical use of probiotics in the pediatric population. Nutr Clin Pract 2009; 24: 50–59PubMedCrossRefGoogle Scholar
  91. 91.
    Williams G, Craig JC. Prevention of recurrent urinary tract infection in children. Curr Opin Infect Dis 2009; 22: 72–76PubMedCrossRefGoogle Scholar
  92. 92.
    Vouloumanou EK, Makris GC, Karageorgopoulos DE, Falagas ME. Probiotics for the prevention of respiratory tract infections: a systematic review. Int J Antimicrob Agents 2009; 34: 197–10PubMedCrossRefGoogle Scholar
  93. 93.
    Tiollier E, Chennaoui M, Gomez-Merino D, Drogou C, Filaire E, Guezennec CY. Effect of a probiotics supplementation on respiratory infections and immune and hormonal parameters during intense military training. Mil Med 2007; 172: 1006–11PubMedGoogle Scholar
  94. 94.
    Rautava S, Salminen S, Isolauri E. Specific probiotics in reducing the risk of acute infections in infancy – a randomised, double-blind, placebo-controlled study. Br J Nutr 2009; 101: 1722–26PubMedCrossRefGoogle Scholar
  95. 95.
    Giamarellos-Bourboulis EJ, Bengmark S, Kanellakopoulou K, Kotzampassi K. Pro- and synbiotics to control inflammation and infection in patients with multiple injuries. J Trauma 2009; 67: 815–21PubMedCrossRefGoogle Scholar
  96. 96.
    Singh M, Ranjan DR. Probiotics for allergic respiratory diseases – Putting it into perspective. Pediatr Allergy Immunol 2009; DOI: 10.1111/j.1399–3038.2009.00921.xGoogle Scholar
  97. 97.
    Del-Rio-Navarro BE, Luis Sienra-Monge JJ, Berber A, Torres-Alcantara S, vila-Castanon L, Gomez-Barreto D. Use of OM-85 BV in children suffering from recurrent respiratory tract infections and subnormal IgG subclass levels. Allergol Immunopathol (Madr) 2003; 31: 7–13Google Scholar
  98. 98.
    Collet JP, Shapiro P, Ernst P, Renzi T, Ducruet T, Robinson A. Effects of an immunostimulating agent on acute exacerbations and hospitalizations in patients with chronic obstructive pulmonary disease. The PARI-IS Study Steering Committee and Research Group. Prevention of acute respiratory infection by an immunostimulant. Am J Respir Crit Care Med 1997; 156:Google Scholar
  99. 99.
  100. 100.
    Grevers G, Palacios OA, Rodriguez B, Abel S, van Aubel A. Treatment of recurrent respiratory tract infections with a polyvalent bacterial lysate: results of an open, prospective, multinational study. Adv Ther 2000; 17: 103–16PubMedCrossRefGoogle Scholar
  101. 101.
    Tielemans C, Gastaldello K, Husson C, Marchant A, Delville JP, Vanherweghem JL et al. Efficacy of oral immunotherapy on respiratory infections in hemodialysis patients: a double-blind, placebo-controlled study. Clin Nephrol 1999; 51: 153–60PubMedGoogle Scholar
  102. 102.
    Kang W, Kudsk KA. Is there evidence that the gut contributes to mucosal immunity in humans? J Parenter Enteral Nutr 2007; 31: 246–58CrossRefGoogle Scholar
  103. 103.
    Huber M, Mossmann H, Bessler WG. Th1–orientated immunological properties of the bacterial extract OM- 85–BV. Eur J Med Res 2005; 10: 2309–17Google Scholar
  104. 104.
    Rozy A, Chorostowska-Wynimko J. Bacterial immunostimulants – mechanism of action and clinical application in respiratory diseases. Pneumonol Alergol Pol 2008; 76: 353–59PubMedGoogle Scholar

Copyright information

© Birkhäuser Basel 2011

Authors and Affiliations

  1. 1.Robert Koch InstituteBerlinGermany

Personalised recommendations