Skip to main content

Equivariance-Based Analysis of PDE Evolutions Related to Multivariate Medians

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13493))

  • 346 Accesses

Abstract

For multivariate data there exist several concepts generalising the median, which differ by their equivariance properties w.r.t. transformations of the data space (e.g. Euclidean, affine). In earlier work on the asymptotic analysis of multivariate image filters built upon these concepts, it was observed that several affine equivariant median filters approximate the same system of partial differential equations (PDEs). In this paper we discuss the equivariance properties of multivariate medians and their associated PDEs in more detail. We discuss what equivariance concept is the preferable generalisation of the very strong equivariance of the scalar-valued median (sometimes also denoted as morphological equivariance) w.r.t. arbitrary monotone transformations. Moreover, we derive multivariate PDE evolutions systematically from equivariance properties. It turns out that the approximation of the same PDE system by different affine equivariant medians is no coincidence but a necessary implication of their equivariance properties. As a by-product, a more general class of multivariate PDE evolutions with favourable equivariance properties arises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations in image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993). https://doi.org/10.1007/BF00375127

    Article  MATH  Google Scholar 

  2. Alvarez, L., Morales, F.: Affine morphological multiscale analysis of corners and multiple junctions. Int. J. Comput. Vis. 25, 95–107 (1994)

    Article  Google Scholar 

  3. Green, P.J.: Peeling bivariate data. In: Barnett, V. (ed.) Interpreting Multivariate Data, pp. 3–20. Wiley, Chichester (1981)

    Google Scholar 

  4. Guichard, F., Morel, J.M.: Partial differential equations and image iterative filtering. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis, pp. 525–562, No. 63 in IMA Conference Series (New Series), Clarendon Press, Oxford (1997)

    Google Scholar 

  5. Hettmansperger, T.P., Randles, R.H.: A practical affine equivariant multivariate median. Biometrika 89(4), 851–860 (2002)

    Article  MathSciNet  Google Scholar 

  6. Kleefeld, A., Breuß, M., Welk, M., Burgeth, B.: Adaptive filters for color images: median filtering and its extensions. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) Computational Color Imaging. Lecture Notes in Computer Science, vol. 9016, pp. 149–158. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15979-9_15

    Chapter  Google Scholar 

  7. Oja, H.: Descriptive statistics for multivariate distributions. Statist. Probab. Lett. 1, 327–332 (1983)

    Article  MathSciNet  Google Scholar 

  8. Rao, C.R.: Methodology based on the \(L_1\)-norm in statistical inference. Sankhyā A 50, 289–313 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics. Computer Vision and Material Sciences. Cambridge University Press, Cambridge, UK (1996)

    MATH  Google Scholar 

  10. Small, C.G.: Measures of centrality for multivariate and directional distributions. Can. J. Stat. 15(1), 31–39 (1987)

    Article  MathSciNet  Google Scholar 

  11. Small, C.G.: A survey of multidimensional medians. Int. Stat. Rev. 58(3), 263–277 (1990)

    Article  Google Scholar 

  12. Spence, C., Fancourt, C.: An iterative method for vector median filtering. In: Proceeding 2007 IEEE International Conference on Image Processing, vol. 5, pp. 265–268 (2007)

    Google Scholar 

  13. Weber, A.: Über den Standort der Industrien. Mohr, Tübingen (1909)

    Google Scholar 

  14. Welk, M.: Multivariate median filters and partial differential equations. J. Math. Imaging Vis. 56, 320–351 (2016). https://doi.org/10.1007/s10851-016-0645-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Welk, M.: PDE for bivariate amoeba median filtering. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 10225, pp. 271–283. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_22

    Chapter  Google Scholar 

  16. Welk, M.: Asymptotic analysis of bivariate half-space median filtering. In: Roth, P.M., Steinbauer, G., Fraundorfer, F., Brandstötter, M., Perko, R. (eds.) Proceedings of the Joint Austrian Computer Vision and Robotics Workshop, pp. 151–156. Verlag der Technischen Universität Graz, Graz (2020). https://doi.org/10.3217/978-3-85125-752-6-34

  17. Welk, M.: Multivariate medians for image and shape analysis. Technical Report eess.IV:1911.00143v2, arXiv.org (2021), arXiv:1911.00143

  18. Welk, M., Breuß, M.: The convex-hull-stripping median approximates affine curvature motion. In: Burger, M., Lellmann, J., Modersitzki, J. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 11603, pp. 199–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22368-7_16

    Chapter  Google Scholar 

  19. Welk, M., Feddern, C., Burgeth, B., Weickert, J.: Median filtering of tensor-valued images. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 2781, pp. 17–24. Springer, Berlin (2003). https://doi.org/10.1007/978-3-540-45243-0_3

    Chapter  Google Scholar 

  20. Welk, M., Kleefeld, A., Breuß, M.: Non-adaptive and amoeba quantile filters for colour images. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 9082, pp. 398–409. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18720-4_34

    Chapter  MATH  Google Scholar 

  21. Welk, M., Weickert, J., Becker, F., Schnörr, C., Feddern, C., Burgeth, B.: Median and related local filters for tensor-valued images. Signal Process. 87, 291–308 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Welk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Welk, M. (2022). Equivariance-Based Analysis of PDE Evolutions Related to Multivariate Medians. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics