Skip to main content

Graph Data Mining in Recommender Systems

  • Conference paper
  • First Online:
Book cover Web Information Systems Engineering – WISE 2021 (WISE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13081))

Included in the following conference series:

Abstract

With the rapid development of e-commerce, massive data is generated from various e-commerce platforms. Most of the generated data can be represented in the forms of graph, which is capable to demonstrate the complicated relations among various entities, for example, graphs describe the interactions history between users and items. It is critical for the platforms to mine graph data to formulate recommendation strategy to gain more profits. For instance, in a user-item interaction graph, we can utilize graph data mining techniques to capture users’ behavioral patterns to make personalized recommendation strategies. Graph data mining in recommendation is currently a research topic attracts more and more attentions from industry and academic fields. In this half-day tutorial, we will present some key graph data mining methods and its applications in recommendation. We hope to find out the directions for the future work and that more theoretical models can be applied under real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://next-nus.github.io/.

  2. 2.

    https://sites.google.com/view/shoujinwanghome/home/talks/ijcai-pricai-2020-tutorial.

  3. 3.

    https://deeprs-tutorial.github.io/.

References

  1. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452

    Article  Google Scholar 

  2. Chen, C., Tsai, M., Lin, Y., Yang, Y.: Query-based music recommendations via preference embedding. In: Sen, S., Geyer, W., Freyne, J., Castells, P. (eds.) Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016, pp. 79–82. ACM (2016). https://doi.org/10.1145/2959100.2959169

  3. Cooper, C., Lee, S.H., Radzik, T., Siantos, Y.: Random walks in recommender systems: Exact computation and simulations. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014 Companion, pp. 811–816. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2567948.2579244

  4. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C., Shen, D., Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 855–864. ACM (2016). https://doi.org/10.1145/2939672.2939754

  5. Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  6. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 1024–1034 (2017). https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

  7. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 355–364 (2017)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, Conference Track Proceedings, 24–26 April 2017. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl

  9. Liu, J., Duan, L.: A survey on knowledge graph-based recommender systems. In: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 5, pp. 2450–2453 (2021). https://doi.org/10.1109/IAEAC50856.2021.9390863

  10. Liu, Z., Ma, Y., Ouyang, Y., Xiong, Z.: Contrastive learning for recommender system. CoRR abs/2101.01317 (2021). https://arxiv.org/abs/2101.01317

  11. Nastase, V., Mihalcea, R., Radev, D.R.: A survey of graphs in natural language processing. Nat. Lang. Eng. 21(5), 665–698 (2015)

    Article  Google Scholar 

  12. Nikolakopoulos, A.N., Karypis, G.: RecWalk: nearly uncoupled random walks for top-n recommendation. In: Culpepper, J.S., Moffat, A., Bennett, P.N., Lerman, K. (eds.) Proceedings of the 12th ACM International Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC, Australia, 11–15 February 2019, pp. 150–158. ACM (2019). https://doi.org/10.1145/3289600.3291016

  13. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani, R. (eds.) The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014, pp. 701–710. ACM (2014). https://doi.org/10.1145/2623330.2623732

  14. Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Gupta, R., Liu, Y., Tang, J., Prakash, B.A. (eds.) The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, KDD 2020, CA, USA, 23–27 August 2020, pp. 1150–1160. ACM (2020). https://doi.org/10.1145/3394486.3403168

  15. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, 18–22 May 2015, pp. 1067–1077. ACM (2015). https://doi.org/10.1145/2736277.2741093

  16. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings, Vancouver, BC, Canada, 30 April–3 May 2018. OpenReview.net (2018). https://openreview.net/forum?id=rJXMpikCZ

  17. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. CoRR abs/1809.10341 (2018). http://arxiv.org/abs/1809.10341

  18. Wang, F., Cui, P., Pei, J., Song, Y., Zang, C.: Recent advances on graph analytics and its applications in healthcare. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3545–3546 (2020)

    Google Scholar 

  19. Wu, S., Zhang, W., Sun, F., Cui, B.: Graph neural networks in recommender systems: a survey. CoRR abs/2011.02260 (2020). https://arxiv.org/abs/2011.02260

  20. Xie, X., Sun, F., Liu, Z., Gao, J., Ding, B., Cui, B.: Contrastive pre-training for sequential recommendation. CoRR abs/2010.14395 (2020). https://arxiv.org/abs/2010.14395

  21. Yang, J., Chen, C., Wang, C., Tsai, M.: HOP-rec: high-order proximity for implicit recommendation. In: Pera, S., Ekstrand, M.D., Amatriain, X., O’Donovan, J. (eds.) Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, 2–7 October 2018, pp. 140–144. ACM (2018). https://doi.org/10.1145/3240323.3240381

  22. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Guo, Y., Farooq, F. (eds.) Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, 19–23 August 2018, pp. 974–983. ACM (2018). https://doi.org/10.1145/3219819.3219890

  23. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/3fe230348e9a12c13120749e3f9fa4cd-Abstract.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Li, Y., Yang, H. (2021). Graph Data Mining in Recommender Systems. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13081. Springer, Cham. https://doi.org/10.1007/978-3-030-91560-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91560-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91559-9

  • Online ISBN: 978-3-030-91560-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics