Skip to main content

Thermal Characterization of Straw-Based Panels Made Out of Straw and Natural Binders

  • Conference paper
  • First Online:
Advanced Technologies, Systems, and Applications VI (IAT 2021)

Abstract

This study investigates the possibility of using crop straw combined with natural binders as building construction material. The straw as a renewable material may have potential in reducing building energy demand. Four types of binders were used to produce composite panel samples. The Guarded Hot Plate method is used to characterize thermal properties and identify the best straw-binder mixture of the composite. The result showed that gypsum-based composite showed the best thermal properties suggesting that straw-based composite panels can be used in light weighed building construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yıldız, G., Çalış, B., Gürel A.E., Ceylan, I.: Investigation of life cycle CO2 emissions of the polycrystalline and cadmium telluride PV panels. Environ. Nanotechnol. Monit. Manag. 14, 100343 (2020). https://doi.org/10.1016/j.enmm.2020.100343

  2. Findik, F., Ermiş, K.: Thermal energy storage. Sustain. Eng. Innov. 2(2), 66–88 (2020). https://doi.org/10.37868/sei.v2i2.115

    Article  Google Scholar 

  3. Küçük, M., Findik, F.: Selected ecological settlements. Herit. Sustain. Dev. 2(1), 1–16 (2020). https://doi.org/10.37868/hsd.v2i1.35

    Article  Google Scholar 

  4. Halilovic, M.: Vernacular architecture sustainability principles: a case study of Bosnian stone houses in Idbar village. Period. Eng. Nat. Sci. 8(4), 2564–2574 (2020)

    Google Scholar 

  5. Ceylan, I., Yildiz, G., Gürel, A., Ergün, A., Tosun, A.: The effect of malfunctions in air handling units on energy and exergy efficiency. Heat Trans. Res. 51(11), 1007–1028 (2020). https://doi.org/10.1615/HEATTRANSRES.2020032895

  6. Durakovic, B., Torlak, M.: Experimental and numerical study of a PCM window model as a thermal energy storage unit. Int. J. Low-Carbon Technol. 12(3), 272–280 (2017)

    Google Scholar 

  7. Duraković, B.: PCMs in building structure. In: PCM-Based Building Envelope Systems. Green Energy and Technology, pp. 63–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38335-0_4

  8. Gurel, A.E., Yıldız, G., Ceylan, I..: Use of air solar collectors in space heating applications. In: 14th National Plumbing Engineering Congress, pp. 1866–1875 (2019)

    Google Scholar 

  9. Örnek, E.: Sustainable characteristics of the vernacular house and its impact to the building physics. Herit. Sustain. Dev. 1(1), 14–20 (2019)

    Article  MathSciNet  Google Scholar 

  10. Duraković, B.: Passive Solar Heating/Cooling Strategies. In: PCM-Based Building Envelope Systems. Green Energy and Technology, pp. 39–62. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38335-0_3

  11. Uyanik, I., Özkan, O., Mihçiokur, H.: Waste management in a university campus. Sustain. Eng. and Innov. 3(1), 49–53 (2021). https://doi.org/10.37868/sei.v3i1.id137

    Article  Google Scholar 

  12. Aydin, N.: Electricity generation potential of municipal solid wastes produced in the province of Edirne. Sustain. Eng. Innov. 3(1), 61–67 (2021). https://doi.org/10.37868/sei.v3i1.id138

    Article  Google Scholar 

  13. Durakovic, B., Yıldız, G., Yahia, M.: Comparative performance evaluation of conventional and renewable thermal insulation materials used in building envelops. Tehnicki vjesnik - Technical Gazette 27(1), 283–289 (2020)

    Google Scholar 

  14. Yildiz, G., Duraković, B., Almisreb, A.A.: Thermal insulation materials towards high thermal performance: a review. Int. J. Adv. Sci. Eng. Inf. Technol (2021, in Press)

    Google Scholar 

  15. Dhakal, U., Mark, G., Russell, R., Umberto, B.: Hygrothermal performance of hempcrete for Ontario (Canada) buildings. J. Clean. Prod. 142, 3655–3664 (2017). https://doi.org/10.1016/j.jclepro.2016.10.102

  16. Jami, T., Karade, S.R., Singh, L.P.: A review of the properties of hemp concrete for green building applications. J. Clean. Prod. 239, 117852. https://doi.org/10.1016/j.jclepro.2019.117852

  17. Basyigit, C., Alkayis, M.H., Kartli, M.I.: Environmental effects of utilization of sustainable building materials. Herit. Sustain. Dev. 3(1), 64–70 (2021). https://doi.org/10.37868/hsd.v3i1.57

    Article  Google Scholar 

  18. Baykal, F.Y.: The polluter should... pay? Herit. Sustain. Dev. 3(1), 71–77 (2021). https://doi.org/10.37868/hsd.v3i1.58

    Article  MathSciNet  Google Scholar 

  19. Iwaro, J., Mwasha, A.: Effects of using coconut fiber-insulated masonry walls to achieve energy efficiency and thermal comfort in residential dwellings. J. Architect. Eng. 25(1), 04019001 (2019). https://doi.org/10.1061/(asce)ae.1943-5568.0000341

    Article  Google Scholar 

  20. Onésippe, C., Passe-Coutrin, N., Toro, F., Delvasto, S., Bilba, K., Arsène, M.: Sugar cane bagasse fibres reinforced cement composites: thermal considerations. Appl. Sci. Manuf. 41(4), 549–556 (2010). https://doi.org/10.1016/j.compositesa.2010.01.002

    Article  Google Scholar 

  21. Hussain, A., Calabria-Holley, J., Lawrence, R., Jiang, Y.: Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites. Constru. Build. Mater. 212, 561–568 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.029

    Article  Google Scholar 

  22. Walker, P., Thomson, A., Maskell, D.: Straw bale construction. In: Nonconventional and Vernacular Construction Materials, pp. 127–155. Woodhead Publishing, Cambridge (2016). https://doi.org/10.1016/b978-0-08-100038-0.00006-8

  23. Evola, G., et al.: Performance comparison between building insulating materials made of straw bales and EPS for timber walls. In: IOP Conference Series: Materials Science and Engineering. p. 072020. Institute of Physics Publishing (2019). https://doi.org/10.1088/1757-899X/609/7/072020

  24. Thomson, A., Walker, P.: Durability characteristics of straw bales in building envelopes. Constru. Build. Mater. 68, 135–141 (2014). https://doi.org/10.1016/j.conbuildmat.2014.06.041

    Article  Google Scholar 

  25. Franco, W., Quaglia, G., Ferraresi, C.: Experimentally based design of a manually operated baler for straw bale construction. In: Boschetti, G., Gasparetto, A. (eds.) Advances in Italian Mechanism Science. MMS, vol. 47, pp. 307–314. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48375-7_33

    Chapter  Google Scholar 

  26. Andersen, B.M., Munch-Andersen, J.: Halmballer og muslinger som isoleringsmaterialer - Sampling and testing report (2001)

    Google Scholar 

  27. Promis, G., et al.: Hygrothermal performance of a straw bale building: in situ and laboratory investigations optimization of the formulation of eco-aggregates concretes obtained by accelerated carbonation process of incinerator waste View project SAPICO2 View project Hygrothermal performance of a straw bale building: in situ and laboratory investigations (no date). https://doi.org/10.13140/RG.2.1.5115.9763

  28. Conti, L., Barbari, M., Monti, M.: Steady-State Thermal Properties of Rectangular Straw-Bales (RSB). Building 6, 6040044 (2016). https://doi.org/10.3390/buildings6040044

  29. Platt, S., et al.: Manufacture and characterisation of prototype straw bale insulation products. Constr. Build. Mater. 262, 120035 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120035

  30. Collet, F., Prétot, S., Lanos, C.: Hemp-straw composites: thermal and hygric performances. Energy Procedia 139, 294–300. https://doi.org/10.1016/j.egypro.2017.11.211

  31. Liuzzi, S., et al.: Characterization of biomass-based materials for building applications: the case of straw and olive tree waste. Ind. Crops Prod. 147, 112229 (2020). https://doi.org/10.1016/j.indcrop.2020.112229

  32. Savic, A., et al.: Thermomechanical behavior of bio-fiber composite thermal insulation panels. Energy Build. 229, 110511. https://doi.org/10.1016/j.enbuild.2020.110511

  33. Arnaud, L., et al.: Hemp and the Construction Industry, pp. 239–259. CABI, Wallingford (2013)

    Google Scholar 

  34. Oudhof, N., et al.: Measurement of the hygrothermal properties of straw-clay mixtures. In: ICBBM, vol. 33, pp. 474–479 (2015)

    Google Scholar 

  35. Jiang, D., et al.: Environmentally friendly alternative to polyester polyol by corn straw on preparation of rigid polyurethane composite. Compos. Commun. 17, 109–114 (2020). https://doi.org/10.1016/j.coco.2019.11.007

    Article  Google Scholar 

  36. Li, X., Cai, Z., Winandy, J.E., Basta, A.H.: Selected properties of particleboard panels manufactured from rice straws of different geometries. Bioresource Technol. 101(12), 4662–4666 (2010). https://doi.org/10.1016/j.biortech.2010.01.053

    Article  Google Scholar 

  37. Huang, Y., et al.: Study on untreated and alkali treated rice straw reinforced geopolymer composites. Mater. Chem. Phys. 262, 124304 (2021). https://doi.org/10.1016/j.matchemphys.2021.124304

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Duraković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rudalija, B., Duraković, B. (2022). Thermal Characterization of Straw-Based Panels Made Out of Straw and Natural Binders. In: Ademović, N., Mujčić, E., Akšamija, Z., Kevrić, J., Avdaković, S., Volić, I. (eds) Advanced Technologies, Systems, and Applications VI. IAT 2021. Lecture Notes in Networks and Systems, vol 316. Springer, Cham. https://doi.org/10.1007/978-3-030-90055-7_22

Download citation

Publish with us

Policies and ethics