Skip to main content

Unsupervised Representation Learning Meets Pseudo-Label Supervised Self-Distillation: A New Approach to Rare Disease Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12905))

Abstract

Rare diseases are characterized by low prevalence and are often chronically debilitating or life-threatening. Imaging-based classification of rare diseases is challenging due to the severe shortage in training examples. Few-shot learning (FSL) methods tackle this challenge by extracting generalizable prior knowledge from a large base dataset of common diseases and normal controls, and transferring the knowledge to rare diseases. Yet, most existing methods require the base dataset to be labeled and do not make full use of the precious examples of the rare diseases. To this end, we propose in this work a novel hybrid approach to rare disease classification, featuring two key novelties targeted at the above drawbacks. First, we adopt the unsupervised representation learning (URL) based on self-supervising contrastive loss, whereby to eliminate the overhead in labeling the base dataset. Second, we integrate the URL with pseudo-label supervised classification for effective self-distillation of the knowledge about the rare diseases, composing a hybrid approach taking advantages of both unsupervised and (pseudo-) supervised learning on the base dataset. Experimental results on classification of rare skin lesions show that our hybrid approach substantially outperforms existing FSL methods (including those using fully supervised base dataset) for rare disease classification via effective integration of the URL and pseudo-label driven self-distillation, thus establishing a new state of the art.

J. Sun and D. Wei—Contributed equally; J. Sun contributed to this work during an internship at Tencent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://challenge2018.isic-archive.com/task3/.

References

  1. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  2. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: International Conference on Learning Representations (2019)

    Google Scholar 

  3. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  4. Codella, N., et al.: Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge hosted by the International Skin Imaging Collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  6. Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born again neural networks. In: International Conference on Machine Learning, pp. 1607–1616. PMLR (2018)

    Google Scholar 

  7. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)

    Google Scholar 

  9. Hsu, K., Levine, S., Finn, C.: Unsupervised learning via meta-learning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  10. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Huang, L., Zhang, C., Zhang, H.: Self-adaptive training: Beyond empirical risk minimization. arXiv preprint arXiv:2002.10319 (2020)

  12. Jiang, X., Ding, L., Havaei, M., Jesson, A., Matwin, S.: Task adaptive metric space for medium-shot medical image classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 147–155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_17

    Chapter  Google Scholar 

  13. Ker, J., Wang, L., Rao, J., Lim, T.: Deep learning applications in medical image analysis. IEEE Access 6, 9375–9389 (2018)

    Article  Google Scholar 

  14. Khodadadeh, S., Boloni, L., Shah, M.: Unsupervised meta-learning for few-shot image classification. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  15. Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-knowledge distillation: A simple way for better generalization. arXiv preprint arXiv:2006.12000 (2020)

  16. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10657–10665 (2019)

    Google Scholar 

  17. Li, F.F., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    Article  Google Scholar 

  18. Li, X., Yu, L., Jin, Y., Fu, C.-W., Xing, L., Heng, P.-A.: Difficulty-Aware Meta-learning for Rare Disease Diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 357–366. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_35

    Chapter  Google Scholar 

  19. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  20. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  21. Paul, A., Tang, Y.X., Shen, T.C., Summers, R.M.: Discriminative ensemble learning for few-shot chest X-ray diagnosis. Med. Image Anal. 68, 101911 (2021)

    Article  Google Scholar 

  22. Ravichandran, A., Bhotika, R., Soatto, S.: Few-shot learning with embedded class models and shot-free meta training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 331–339 (2019)

    Google Scholar 

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  24. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19(1), 221–248 (2017)

    Article  Google Scholar 

  25. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4080–4090 (2017)

    Google Scholar 

  26. Steiner, B., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  27. Stolk, P., Willemen, M.J., Leufkens, H.G.: Rare essentials: drugs for rare diseases as essential medicines. Bull. World Health Organ. 84, 745–751 (2006)

    Article  Google Scholar 

  28. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June 2018)

    Google Scholar 

  29. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Proceedings of the European Conference on Computer Vision (2020)

    Google Scholar 

  30. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  31. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3637–3645 (2016)

    Google Scholar 

  32. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher: improve the performance of convolutional neural networks via self distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3713–3722 (2019)

    Google Scholar 

  33. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  34. Zhu, W., Liao, H., Li, W., Li, W., Luo, J.: Alleviating the incompatibility between cross entropy loss and episode training for few-shot skin disease classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 330–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_32

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720190012), Key-Area Research and Development Program of Guangdong Province, China (No. 2018B010111001), and Scientific and Technical Innovation 2030 - “New Generation Artificial Intelligence” Project (No. 2020AAA0104100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liansheng Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 165 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Wei, D., Ma, K., Wang, L., Zheng, Y. (2021). Unsupervised Representation Learning Meets Pseudo-Label Supervised Self-Distillation: A New Approach to Rare Disease Classification. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics