Skip to main content

Efficient Neural Network Approximation of Robust PCA for Automated Analysis of Calcium Imaging Data

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12907))

Abstract

Calcium imaging is an essential tool to study the activity of neuronal populations. However, the high level of background fluorescence in images hinders the accurate identification of neurons and the extraction of neuronal activities. While robust principal component analysis (RPCA) is a promising method that can decompose the foreground and background in such images, its computational complexity and memory requirement are prohibitively high to process large-scale calcium imaging data. Here, we propose BEAR, a simple bilinear neural network for the efficient approximation of RPCA which achieves an order of magnitude speed improvement with GPU acceleration compared to the conventional RPCA algorithms. In addition, we show that BEAR can perform foreground-background separation of calcium imaging data as large as tens of gigabytes. We also demonstrate that two BEARs can be cascaded to perform simultaneous RPCA and non-negative matrix factorization for the automated extraction of spatial and temporal footprints from calcium imaging data. The source code used in the paper is available at https://github.com/NICALab/BEAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bouchard, M.B., et al.: Swept confocally-aligned planar excitation (scape) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics 9(2), 113–119 (2015)

    Article  Google Scholar 

  3. Bouwmans, T., Sobral, A., Javed, S., Jung, S.K., Zahzah, E.H.: Decomposition into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 23, 1–71 (2017)

    Article  Google Scholar 

  4. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21(2), 572–596 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cong, L., et al.: Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (danio rerio). Elife 6, e28158 (2017)

    Google Scholar 

  7. Dong, M., et al.: Towards neuron segmentation from macaque brain images: a weakly supervised approach. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 194–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_19

    Chapter  Google Scholar 

  8. Feng, J., Xu, H., Yan, S.: Online robust PCA via stochastic optimization. Adv. Neural. Inf. Process. Syst. 26, 404–412 (2013)

    Google Scholar 

  9. Giovannucci, A., et al.: Caiman an open source tool for scalable calcium imaging data analysis. Elife 8, e38173 (2019)

    Google Scholar 

  10. Hovhannisyan, V., Panagakis, Y., Parpas, P., Zafeiriou, S.: Multilevel approximate robust principal component analysis. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 536–544 (2017)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kirschbaum, E., Bailoni, A., Hamprecht, F.A.: DISCo: deep learning, instance segmentation, and correlations for cell segmentation in calcium imaging. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 151–162. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_15

    Chapter  Google Scholar 

  13. Li, C., et al.: Fast background removal method for 3D multi-channel deep tissue fluorescence imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 92–99. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_11

    Chapter  Google Scholar 

  14. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)

  15. Nejatbakhsh, A., et al.: Demixing calcium imaging data in C. elegans via deformable non-negative matrix factorization. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 14–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_2

    Chapter  Google Scholar 

  16. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  17. Peng, T., Wang, L., Bayer, C., Conjeti, S., Baust, M., Navab, N.: Shading correction for whole slide image using low rank and sparse decomposition. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 33–40. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_5

    Chapter  Google Scholar 

  18. Pnevmatikakis, E.A., et al.: Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89(2), 285–299 (2016)

    Article  Google Scholar 

  19. Rahmani, M., Atia, G.K.: High dimensional low rank plus sparse matrix decomposition. IEEE Trans. Signal Process. 65(8), 2004–2019 (2017)

    Article  MathSciNet  Google Scholar 

  20. Sobral, A., Bouwmans, T., Zahzah, E.H.: Lrslibrary: low-rank and sparse tools for background modeling and subtraction in videos. Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing (2016)

    Google Scholar 

  21. Stevenson, I.H., Kording, K.P.: How advances in neural recording affect data analysis. Nat. Neurosci. 14(2), 139–142 (2011)

    Article  Google Scholar 

  22. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  23. Voleti, V., et al.: Real-time volumetric microscopy of in vivo dynamics and large-scale samples with scape 2.0. Nat. Methods 16(10), 1054–1062 (2019)

    Google Scholar 

  24. Xiao, W., Huang, X., He, F., Silva, J., Emrani, S., Chaudhuri, A.: Online robust principal component analysis with change point detection. IEEE Trans. Multimedia 22(1), 59–68 (2019)

    Article  Google Scholar 

  25. Yoon, Y.G., et al.: Sparse decomposition light-field microscopy for high speed imaging of neuronal activity. Optica 7(10), 1457–1468 (2020)

    Article  Google Scholar 

  26. Yuan, Z., Yang, Z., Oja, E.: Projective nonnegative matrix factorization: sparseness, orthogonality, and clustering. Neural Process. Lett. 11–13 (2009)

    Google Scholar 

  27. Zhou, T., Tao, D.: Godec: randomized low-rank & sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011 (2011)

    Google Scholar 

  28. Zhou, T., Tao, D.: Greedy bilateral sketch, completion & smoothing. In: Carvalho, C.M., Ravikumar, P. (eds. ) Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, vol. 31, 650–658. PMLR (2013)

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation of Korea (2020R1C1C1009869), the Korea Medical Device Development Fund grant funded by the Korea government (202011B21-05), Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2019-0-00075, Artificial Intelligence Graduate School Program (KAIST)), and 2020 KAIST-funded AI Research Program. The zebrafish lines used for calcium imaging were provided by the Zebrafish Center for Disease Modeling (ZCDM), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Gyu Yoon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 161 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, S., Cho, ES., Park, I., Shin, K., Yoon, YG. (2021). Efficient Neural Network Approximation of Robust PCA for Automated Analysis of Calcium Imaging Data. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics