Skip to main content

Robust Retinal Vessel Segmentation from a Data Augmentation Perspective

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12970))

Included in the following conference series:

Abstract

Retinal vessel segmentation is a fundamental step in screening, diagnosis, and treatment of various cardiovascular and ophthalmic diseases. Robustness is one of the most critical requirements for practical utilization, since the test images may be captured using different fundus cameras, or be affected by various pathological changes. We investigate this problem from a data augmentation perspective, with the merits of no additional training data or inference time. In this paper, we propose two new data augmentation modules, namely, channel-wise random Gamma correction and channel-wise random vessel augmentation. Given a training color fundus image, the former applies random gamma correction on each color channel of the entire image, while the latter intentionally enhances or decreases only the fine-grained blood vessel regions using morphological transformations. With the additional training samples generated by applying these two modules sequentially, a model could learn more invariant and discriminating features against both global and local disturbances. Experimental results on both realworld and synthetic datasets demonstrate that our method can improve the performance and robustness of a classic convolutional neural network architecture. The source code is available at https://github.com/PaddlePaddle/Research/tree/master/CV/robust_vessel_segmentation.

X. Sun and H. Fang—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/PaddlePaddle/PaddleSeg.

References

  1. Araújo, R.J., Cardoso, J.S., Oliveira, H.P.: A deep learning design for improving topology coherence in blood vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 93–101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_11

    Chapter  Google Scholar 

  2. Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 7(3) (2012)

    Google Scholar 

  3. Fan, Z., et al.: A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Trans. Image Process. 28(5), 2367–2377 (2018)

    Article  MathSciNet  Google Scholar 

  4. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  5. Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_16

    Chapter  Google Scholar 

  6. Gu, Z., et al.: Ce-net: context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  7. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  8. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  9. Kanski, J.J., Bowling, B.: Clinical Ophthalmology: A Systematic Approach. Elsevier Health Sciences, Philadelphia (2011)

    Google Scholar 

  10. Leandro, J.J., Cesar, J., Jelinek, H.F.: Blood vessels segmentation in retina: preliminary assessment of the mathematical morphology and of the wavelet transform techniques. In: Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing, pp. 84–90. IEEE (2001)

    Google Scholar 

  11. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)

    Article  Google Scholar 

  12. Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (caiar) program. Investig. Ophthalmol. Vis. Sci. 50(5), 2004–2010 (2009)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  15. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  16. Tyler, M.E., Hubbard, L., Boydston, K., Pugliese, A.: Characteristics of digital fundus camera systems affecting tonal resolution in color retinal images. J. Ophthal. Photo. 31(1), 1–9 (2009)

    Google Scholar 

  17. Wang, B., Qiu, S., He, H.: Dual encoding U-Net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

  18. Zhang, S., et al.: Attention network guided for retinal image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 797–805. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_88

    Chapter  Google Scholar 

  19. Zhou, M., Jin, K., Wang, S., Ye, J., Qian, D.: Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. 65(3), 521–527 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X. et al. (2021). Robust Retinal Vessel Segmentation from a Data Augmentation Perspective. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2021. Lecture Notes in Computer Science(), vol 12970. Springer, Cham. https://doi.org/10.1007/978-3-030-87000-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87000-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86999-1

  • Online ISBN: 978-3-030-87000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics