Skip to main content

Computational Investigation on the Thermodynamics of H2CO + NH2 → NH2CHO + H on Interstellar Water Ice Surfaces

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12953))

Included in the following conference series:

Abstract

Formamide has a key role in prebiotic chemistry as it is the simplest molecule containing the four most important atoms from a biological point of view: hydrogen, carbon, nitrogen and oxygen. Due to its importance, the formation of this molecule has been studied and different pathways have been considered both in gas-phase and on ices of dust grains since it was first detected. In the present work, the thermodynamics of the formation route of formamide starting from NH2 and H2CO, a reaction channel proposed to occur in the gas phase, has been theoretically investigated in the scenario taking place on icy dust grains modelled by both a cluster and a periodic approach. Different DFT functionals have been employed to obtain accurate energy values for the mechanistic steps involved in the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceccarelli, C., et al.: Seeds of life in space (SOLIS): the organic composition diversity at 300–1000 au scale in solar-type star-forming regions*. Astrophys. J. 850, 176 (2017). https://doi.org/10.3847/1538-4357/aa961d

    Article  Google Scholar 

  2. Herbst, E., van Dishoeck, E.F.: Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47(1), 427–480 (2009). https://doi.org/10.1146/annurev-astro-082708-101654

    Article  Google Scholar 

  3. Rubin, R.H., Swenson, G.W.J., Benson, R.C., Tigelaar, H.L., Flygare, W.H.: Microwave detection of interstellar formamide. Astrophys. J. 169, L39 (1971). https://doi.org/10.1086/180810

    Article  Google Scholar 

  4. Rimola, A., et al.: Can formamide be formed on interstellar ice? An atomistic perspective. ACS Earth Sp. Chem. 2(7), 720–734 (2018). https://doi.org/10.1021/acsearthspacechem.7b00156

    Article  Google Scholar 

  5. Barone, V., et al.: Gas-phase formation of the prebiotic molecule formamide: insights from new quantum computations. Mon. Not. R. Astron. Soc. Lett. 453(1), L31–L35 (2015). https://doi.org/10.1093/mnrasl/slv094

    Article  Google Scholar 

  6. Enrique-Romero, J., Rimola, A., Ceccarelli, C., Ugliengo, P., Balucani, N., Skouteris, D.: Reactivity of HCO with CH3 and NH2 on water ice surfaces. a comprehensive accurate quantum chemistry study. ACS Earth Sp. Chem. 3(10), 2158–2170 (2019). https://doi.org/10.1021/acsearthspacechem.9b00156

    Article  Google Scholar 

  7. Garrod, R.T., Herbst, E.: Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 457(3), 927–936 (2006). https://doi.org/10.1051/0004-6361:20065560

    Article  Google Scholar 

  8. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993). https://doi.org/10.1063/1.464304

    Article  Google Scholar 

  9. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098–3100 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  Google Scholar 

  10. Zhao, Y., Truhlar, D.G.: A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125(19), 194101 ( 2006). https://doi.org/10.1063/1.2370993

    Article  Google Scholar 

  11. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized Gradient Approximation Made Simple (1996). Accessed: 09 Jun 2019. https://doi.org/10.1103/PhysRevLett.77.3865. https://journals-aps-org.are.uab.cat/prl/pdf/

  12. Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25(12), 1463–1473 (2004). https://doi.org/10.1002/jcc.20078

    Article  Google Scholar 

  13. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759

    Article  Google Scholar 

  14. Tsuneda, T.: Density functional theory in quantum chemistry, vol. 9784431548256. Springer Japan (2013)

    Google Scholar 

  15. Sure, R., Grimme, S.: Corrected small basis set Hartree-Fock method for large systems. J. Comput. Chem. 34(19), 1672–1685 (2013). https://doi.org/10.1002/jcc.23317

    Article  Google Scholar 

  16. Zamirri, L., Casassa, S., Rimola, A., Segado-Centellas, M., Ceccarelli, C., Ugliengo, P.: IR spectral fingerprint of carbon monoxide in interstellar water-ice models. MNRAS 480, 1427–1444 (2018). https://doi.org/10.1093/mnras/sty1927

    Article  Google Scholar 

  17. Pisani, C., Casassa, S., Ugliengo, P.: Proton-ordered ice structures at zero pressure. A quantum-mechanical investigation. Chem. Phys. Lett. 253(3–4), 201–208 (1996). https://doi.org/10.1016/0009-2614(96)00228-X

    Article  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 865657) for the project “Quantum Chemistry on Interstellar Grains” (QUANTUMGRAIN). MINECO (project CTQ2017-89132-P) DIUE (project 2017SGR1323) are acknowledged for financial support. A.R. is indebted to the “Ramón y Cajal” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berta Martínez-Bachs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez-Bachs, B., Rimola, A. (2021). Computational Investigation on the Thermodynamics of H2CO + NH2 → NH2CHO + H on Interstellar Water Ice Surfaces. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12953. Springer, Cham. https://doi.org/10.1007/978-3-030-86976-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86976-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86975-5

  • Online ISBN: 978-3-030-86976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics