Skip to main content

The Artificial Intelligence Doctor: Considerations for the Clinical Implementation of Ethical AI

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroscience

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 134))

Abstract

The applications of artificial intelligence (AI) and machine learning (ML) in modern medicine are growing exponentially, and new developments are fast-paced. However, the lack of trust and appropriate legislation hinder its clinical implementation. Recently, there is a clear increase of directives and considerations on Ethical AI. However, most literature broadly deals with ethical tensions on a meta-level without offering hands-on advice in practice. In this article, we non-exhaustively cover basic practical guidelines regarding AI-specific ethical aspects, including transparency and explicability, equity and mitigation of biases, and lastly, liability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349:255–60. https://doi.org/10.1126/science.aaa8415.

    Article  PubMed  CAS  Google Scholar 

  3. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article  PubMed  CAS  Google Scholar 

  4. Vellido A. Societal issues concerning the application of artificial intelligence in medicine. Kidney Dis. 2019;5(1):11–7.

    Article  Google Scholar 

  5. Whittlestone J, Alexandrova A, Nyrup R, Cave S. The role and limits of principles in AI ethics: towards a focus on tensions. In: AIES 2019—Proceedings of the 2019 AAAI/ACM conference on AI, ethics, and society; 2019. p. 195–200.

    Google Scholar 

  6. Jobin A, Ienca M, Vayena E. Artificial intelligence: the global landscape of ethics guidelines. arXiv; 2019.

    Google Scholar 

  7. European Commision. Artificial intelligence: commission takes forward its work on ethics guidelines; 2019.

    Google Scholar 

  8. Reznick RK, Harris K, Horsley T. Artificial intelligence (AI) and emerging digital technologies; 2020.

    Google Scholar 

  9. Crawford K, Dobbe R, Dryer T, et al. AI now 2019 report. New York: AI Now Institute; 2019.

    Google Scholar 

  10. Floridi L. Establishing the rules for building trustworthy AI. Nat Mach Intell. 2019;1(6):261–2.

    Article  Google Scholar 

  11. Bonsanto MM, Tronnier VM. Artificial intelligence in neurosurgery. Chirurg. 2020;91(3):229–34.

    Article  PubMed  CAS  Google Scholar 

  12. Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, Smith TR. Natural and artificial intelligence in neurosurgery: a systematic review. Clin Neurosurg. 2018;83(2):181–92.

    Article  Google Scholar 

  13. Dreiseitl S, Binder M. Do physicians value decision support? A look at the effect of decision support systems on physician opinion. Artif Intell Med. 2005;33(1):25–30. https://doi.org/10.1016/j.artmed.2004.07.007.

    Article  PubMed  Google Scholar 

  14. Goodman B, Flaxman S. European Union regulations on algorithmic decision making and a “right to explanation”. AI Mag. 2017;38(3):50–7. https://doi.org/10.1609/aimag.v38i3.2741.

    Article  Google Scholar 

  15. Ross C, Swetlitz I. IBM’s Watson supercomputer recommended ‘unsafe and incorrect’ cancer treatments, internal documents show. Stat+; 2018.

    Google Scholar 

  16. Varshney KR, Alemzadeh H. On the safety of machine learning: cyber-physical systems, decision sciences, and data products. Big Data. 2016;5:246–55.

    Article  Google Scholar 

  17. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge, MA: The MIT Press; 2016.

    Google Scholar 

  18. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436.

    Article  PubMed  CAS  Google Scholar 

  19. Djuric U, Zadeh G, Aldape K, Diamandis P. Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care. NPJ Precis Oncol. 2017;1:22. https://doi.org/10.1038/s41698-017-0022-1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Farabet C, Couprie C, Najman L, Lecun Y. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1915–29. https://doi.org/10.1109/TPAMI.2012.231.

    Article  PubMed  Google Scholar 

  21. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284.

  22. Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag. 2012;29(6):82–97. https://doi.org/10.1109/MSP.2012.2205597.

    Article  Google Scholar 

  23. Mikolov T, Deoras A, Povey D, Burget L, Černocký J. Strategies for training large scale neural network language models. In: 2011 IEEE workshop on automatic speech recognition and understanding, ASRU 2011, PRO; 2011. https://doi.org/10.1109/ASRU.2011.6163930.

    Chapter  Google Scholar 

  24. Albers DJ, Levine ME, Stuart A, Mamykina L, Gluckman B, Hripcsak G. Mechanistic machine learning: how data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype. J Am Med Inform Assoc. 2018;25(10):1392–401. https://doi.org/10.1093/jamia/ocy106.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749–60. https://doi.org/10.1038/s41551-018-0304-0.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1:206–15. https://doi.org/10.1038/s42256-019-0048-x.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016. https://doi.org/10.1145/2939672.2939778.

    Chapter  Google Scholar 

  28. Petsiuk V, Das A, Saenko K. RISE: randomized input sampling for explanation of black-box models. arXiv; 2018.

    Google Scholar 

  29. Mittelstadt B. Principles alone cannot guarantee ethical AI. Nat Mach Intell. 2019;1(11):501–7.

    Article  Google Scholar 

  30. Wang T, Zhao J, Yatskar M, Chang KW, Ordonez V. Balanced datasets are not enough: Estimating and mitigating gender bias in deep image representations. In: Proceedings of the IEEE International Conference on Computer Vision 2019-October; 2019. p. 5309–18.

    Google Scholar 

  31. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. https://doi.org/10.1038/s41591-018-0316-z.

    Article  PubMed  CAS  Google Scholar 

  32. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning for EHR—supplement. NPJ Digit Med. 2018;1:18.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Weng SF, Vaz L, Qureshi N, Kai J. Prediction of premature all-cause mortality: a prospective general population cohort study comparing machine-learning and standard epidemiological approaches. PLoS One. 2019;14:e0214365. https://doi.org/10.1371/journal.pone.0214365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Schulz MA, Thomas Yeo BT, Vogelstein JT, Mourao-Miranada J, Kather JN, Kording K, Richards B, Bzdok D. Deep learning for brains?: different linear and nonlinear scaling in UK biobank brain images vs. machine-learning datasets. In: bioRxiv; 2019. https://doi.org/10.1101/757054.

    Chapter  Google Scholar 

  35. Bellot P, de los Campos G, Pérez-Enciso M. Can deep learning improve genomic prediction of complex human traits? Genetics. 2018;210(3):809–19. https://doi.org/10.1534/genetics.118.301298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hastie T, Tibshirani R, Friedman J. Springer series in statistics the elements of statistical learning—data mining, inference, and prediction. Berlin: Springer; 2009.

    Google Scholar 

  37. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. Curr Med Chem. 2000. https://doi.org/10.1007/978-1-4614-7138-7.

  38. Kuhn M, Johnson K. Applied predictive modeling. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-6849-3.

    Book  Google Scholar 

  39. Neeman T. Clinical prediction models: a practical approach to development, validation, and updating by Ewout W. Steyerberg. Int Stat Rev. 2009;77(2):320–1. https://doi.org/10.1111/j.1751-5823.2009.00085_22.x.

    Article  Google Scholar 

  40. Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiat. 2020;77(5):534–40. https://doi.org/10.1001/jamapsychiatry.2019.3671.

    Article  Google Scholar 

  41. Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning. In: Advances in neural information processing systems; 2016.

    Google Scholar 

  42. Yao S, Huang B. Beyond parity: fairness objectives for collaborative filtering. In: Advances in neural information processing systems; 2017.

    Google Scholar 

  43. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xie Q, Dai Z, Du Y, Hovy E, Neubig G. Controllable invariance through adversarial feature learning. In: Advances in neural information processing systems; 2017.

    Google Scholar 

  45. Zhang BH, Lemoine B, Mitchell M. Mitigating unwanted biases with adversarial learning. In: AIES 2018—Proceedings of the 2018 AAAI/ACM conference on AI, ethics, and society; 2018. https://doi.org/10.1145/3278721.3278779.

    Chapter  Google Scholar 

  46. Stringhini S, Carmeli C, Jokela M, et al. Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. Lancet. 2017;389(10075):1229–37.

    Article  PubMed  PubMed Central  Google Scholar 

  47. European Commission E. Work Programme 2018–2020: Science with and for society; 2018.

    Google Scholar 

  48. Bathaee Y. The artificial intelligence black box and the failure of intent and causation. Harv J Law Technol. 2018;31(2):889–936.

    Google Scholar 

  49. Buiten MC. Towards intelligent regulation of artificial intelligence. Eur J Risk Regul. 2019;10(1):41–59.

    Article  Google Scholar 

  50. Gasser U, Almeida VAF. A layered model for AI governance. IEEE Internet Comput. 2017;21(6):58–62.

    Article  Google Scholar 

Download references

Acknowledgments and Disclosure

Funding: J. M. K. and D. D. are supported by the Bundesministerium für Bildung und Forschung (BMBF COMPLS3–022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius M. Kernbach .

Editor information

Editors and Affiliations

Ethics declarations

 None of the authors has any conflict of interest to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kernbach, J.M., Hakvoort, K., Ort, J., Clusmann, H., Neuloh, G., Delev, D. (2022). The Artificial Intelligence Doctor: Considerations for the Clinical Implementation of Ethical AI. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85292-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85291-7

  • Online ISBN: 978-3-030-85292-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics