Skip to main content

Direct Tensile Tests of Supercritical Steel Fibre Reinforced Concrete

  • Conference paper
  • First Online:
Fibre Reinforced Concrete: Improvements and Innovations II (BEFIB 2021)

Part of the book series: RILEM Bookseries ((RILEM,volume 36))

Included in the following conference series:

Abstract

Steel fibre reinforced concrete (SFRC) becomes increasingly interesting for structural design and application. However, to reinforce structures just with steel fibres – not including any rebar – supercritical fibre contents are essential to ensure hardening behaviour in the post-cracking domain. Material properties are usually determined from experiments conducting three- or four-point bending tests. Specific conversion factors capture the softening behaviour and enable to transform flexural into tensile strengths. Own experiments prove that fibre contents of 1.8 Vol.-% yield flexural strengths of about 8 MPa. To get definite and reliable tensile strengths, direct tensile tests on optimised bone-shaped specimens made of supercritical SFRC are proposed here. As a specimen a slab (w × h × l = 200 × 100 × 720 mm3) is casted horizontally. That way, fibre orientation and distribution representative for practically relevant slabs with 10 cm thickness are simulated. To eliminate the so-called wall-effect that occurs during casting, the edges are cut off by water jet cutting before testing. Two pairs of displacement transducers on each face of the slab record the crack opening over a measuring length of 100 mm on the top and 400 mm on the bottom face. A new test set-up is introduced. Loading is applied to the specimen by friction using pre-tensioned threaded steel rods. Coating with an epoxy resin and corundum guarantees the required coefficient of friction. Displacement transducers on the top and bottom of the specimen record the relative displacement between the specimen and the test station. Axial loading is induced by a triangular steel structure (framework). Strain gauges on the outer faces of the diagonal struts control inevitable eccentricities of the load transfer. Consequently, highly accurate measurements are recorded. During testing, the crack flanks are slowly pulled apart from another (up to 4 mm) but without complete separation. On average a maximum tensile strength of 3 MPa and a coefficient of variation of 11% for maximum force is recorded what indicates a small scatter and highly accurate strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forman, P., Gaganelis, G., Mark, P.: Optimierungsgestützt entwerfen und bemessen. Bautechnik 97(10), 697–707 (2020). https://doi.org/10.1002/bate.202000054

    Article  Google Scholar 

  2. Forman, P., Penkert, S., Mark, P., Schnell, J.: Design of modular concrete heliostats symmetry reduction methods. Civil Eng. Des. 2(4), 92–103 (2020). https://doi.org/10.1002/cend.202000013

    Article  Google Scholar 

  3. Gaganelis, G., Mark, P.: Downsizing weight while upsizing efficiency – an experimental approach to develop optimized ultra-light UHPC hybrid beams. Struct. Concr. 20(6), 1883–1895 (2019). https://doi.org/10.1002/suco.201900215

    Article  Google Scholar 

  4. Heek, P., Tkocz, J., Mark, P.: A thermo-mechanical model for SFRC beams or slabs at elevated temperatures. Mater. Struct. 51(4), 1–16 (2018). https://doi.org/10.1617/s11527-018-1218-8

    Article  Google Scholar 

  5. Heek, P., Tkocz, J., Thiele, C., Vitt, G., Mark, P.: Fasern unter Feuer. Beton- und Stahlbetonbau 110(10), 656–671 (2015). https://doi.org/10.1002/best.201500046

    Article  Google Scholar 

  6. Heek, P., Ahrens, M.A., Mark, P.: Incremental-iterative model for time-variant analysis of SFRC subjected to flexural fatigue. Mater. Struct. 50(1), 1–15 (2017). https://doi.org/10.1617/s11527-016-0928-z. Article No. 62

    Article  Google Scholar 

  7. Heek, P., Mark, P.: Zur Ermüdung von Beton und Stahlfaserbeton. Beton- und Stahlbetonbau 111(4), 221–232 (2016). https://doi.org/10.1002/best.201500054

    Article  Google Scholar 

  8. Empelmann, M., Oettel, V., Cramer, J.: ‘Berechnung der Rissbreite von mit Stahlfasern und Betonstahl bewehrten Betonbauteilen‘. Beton- und Stahlbetonbau 115(2), 136–145 (2020). https://doi.org/10.1002/best.201900065

    Article  Google Scholar 

  9. Plizzari, G., Serna, P.: Structural effects of FRC creep. Mater. Struct. 51(6), 1–11 (2018). https://doi.org/10.1617/s11527-018-1290-0. Article No. 167

    Article  Google Scholar 

  10. Di Prisco, M., Plizzari, G., Vandewalle, L.: Fibre reinforced concrete: new design perspectives. Mater. Struct. 42(9), 1261–1281 (2009). https://doi.org/10.1617/s11527-009-9529-4

    Article  Google Scholar 

  11. Look, K., Heek, P., Mark, P.: Stahlfaserbetonbauteile praxisgerecht berechnen, bemessen und optimieren. Beton- und Stahlbetonbau 114(5), 296–306 (2019). https://doi.org/10.1002/best.201800097

    Article  Google Scholar 

  12. Mark, P., Oettel, V., Look, K., Empelmann, M.: Neuauflage DAfStb-Richtlinie Stahlfaserbeton. Beton- und Stahlbetonbau 116(1) (2021). https://doi.org/10.1002/best.202000065

  13. Look, K., Heek, P., Mark, P.: Towards rebar substitution by fibres - tailored supercritical fibre contents. In: Serna, P., et al. (eds.) BEFIB 2020, RILEM Bookseries, vol. 30, pp. 908–919 (2020)

    Google Scholar 

  14. Lin, Y.-z.: DAfStb-Heft 494: Tragverhalten von Stahlfaserbeton. Institut für Massivbau und Baustofftechnologie, Universität Karlsruhe, Dissertation (1996)

    Google Scholar 

  15. Soroushian, P., Lee, C.-D.: Tensile strength of steel fiber reinforced concrete - correlation with some measures of fiber spacing. Mater. J. 87(6), 542–546 (1990)

    Google Scholar 

  16. Soroushian, P., Lee, C.-D.: Distribution and orientation of fibers in steel fiber reinforced concrete. Mater. J. 87(5), 433–439 (1990)

    Google Scholar 

  17. Stähli, P., Custer, R., van Mier, J.G.M.: On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater. Struct. 41(1), 189–196 (2008). https://doi.org/10.1617/s11527-007-9229-x

    Article  Google Scholar 

  18. Lanwer, J.-P., Oettel, V., Empelmann, M., Höper, S., Kowalsky, U., Dinkler, D.: Bond behavior of micro steel fibers embedded in ultra-high performance concrete subjected to monotonic and cyclic loading. Struct. Concr. 20(4), 1243–1253 (2019). https://doi.org/10.1002/suco.201900030

    Article  Google Scholar 

  19. Mattheck, C., Kappel, R., Sauer, A.: Shape optimization the easy way - the method of tensile triangles. Int. J. Des. Nat. Ecodyn. 2(4), 301–309 (2007). https://doi.org/10.2495/D&N-V2-N4-301-309

    Article  Google Scholar 

  20. Mattheck, C.: Design and growth rules for biological structures and their application to engineering. Fatigue Fract. Eng. Mater. Struct. 13(5), 535–550 (1990). https://doi.org/10.1111/j.1460-2695.1990.tb00623.x

    Article  Google Scholar 

  21. Mattheck, C.: Engineering components grow like trees. Materialwiss. Werkstofftech. 21(4), 143–168 (1990). https://doi.org/10.1002/mawe.19900210403

    Article  Google Scholar 

  22. EN 13369: Common rules for precast concrete products (2018)

    Google Scholar 

  23. International Federation for Structural Concrete: fib Model Code for Concrete Structures 2010. Ernst & Sohn, Berlin (2013)

    Google Scholar 

  24. Deutscher Ausschuss für Stahlbeton: DAfStb-Richtlinie Stahlfaserbeton, Beuth, Berlin (2012)

    Google Scholar 

  25. prEN 1992-1-1 – Annex L, Draft D7 to the Eurocode 2 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank BASF SE, BauMineral GmbH, NV Bekaert SA and Dyckerhoff GmbH for the friendly provision of the test materials. Many thanks also to the members of the Structural Testing Laboratory KIBKON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Look .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 RILEM

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Look, K., Heek, P., Mark, P. (2022). Direct Tensile Tests of Supercritical Steel Fibre Reinforced Concrete. In: Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J. (eds) Fibre Reinforced Concrete: Improvements and Innovations II. BEFIB 2021. RILEM Bookseries, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-83719-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83719-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83718-1

  • Online ISBN: 978-3-030-83719-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics