Skip to main content

On Minimum Generalized Manhattan Connections

  • Conference paper
  • First Online:
Book cover Algorithms and Data Structures (WADS 2021)

Abstract

We consider minimum-cardinality Manhattan connected sets with arbitrary demands: Given a collection of points P in the plane, together with a subset of pairs of points in P (which we call demands), find a minimum-cardinality superset of P such that every demand pair is connected by a path whose length is the \(\ell _1\)-distance of the pair. This problem is a variant of three well-studied problems that have arisen in computational geometry, data structures, and network design: (i) It is a node-cost variant of the classical Manhattan network problem, (ii) it is an extension of the binary search tree problem to arbitrary demands, and (iii) it is a special case of the directed Steiner forest problem. Since the problem inherits basic structural properties from the context of binary search trees, an \(O(\mathrm {log}\;n)\)-approximation is trivial. We show that the problem is NP-hard and present an \(O(\sqrt{\mathrm {log}\;n})\)-approximation algorithm. Moreover, we provide an \(O(\mathrm {log}\;\mathrm {log}\;n)\)-approximation algorithm for complete k-partite demands as well as improved results for unit-disk demands and several generalizations. Our results crucially rely on a new lower bound on the optimal cost that could potentially be useful in the context of BSTs.

The full version of this paper [1] can be found at https://arxiv.org/abs/2010.14338.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, the problem stated in [10] is called MinASS which appears different from Manhattan problem, but they can be shown to be equivalent, see the Appendix of the full version [1].

  2. 2.

    Demaine et al. [10] prove NP-hardness for MinGMConn with uniform demands but allow the input to contain multiple points on the same row. Their result is incomparable to ours.

References

  1. Antoniadis, A., et al.: On minimum generalized Manhattan connections. CoRR abs/2010.14338 (2020). https://arxiv.org/abs/2010.14338

  2. Chalermsook, P., Chuzhoy, J., Saranurak, T.: Pinning down the strong Wilber 1 bound for binary search trees. arXiv preprint arXiv:1912.02900 (2019)

  3. Chalermsook, P., Goswami, M., Kozma, L., Mehlhorn, K., Saranurak, T.: Pattern-avoiding access in binary search trees. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 410–423. IEEE (2015)

    Google Scholar 

  4. Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems in undirected graphs and the directed Steiner network problem. ACM Trans. Algorithms (TALG) 7(2), 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chepoi, V., Nouioua, K., Vaxes, Y.: A rounding algorithm for approximating minimum Manhattan networks. Theoret. Comput. Sci. 390(1), 56–69 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chin, F.Y., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Discrete Comput. Geom. 45(4), 701–722 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cole, R.: On the dynamic finger conjecture for splay trees. part II: the proof. SIAM J. Comput. 30(1), 44–85 (2000)

    Google Scholar 

  8. Das, A., Fleszar, K., Kobourov, S., Spoerhase, J., Veeramoni, S., Wolff, A.: Approximating the generalized minimum Manhattan network problem. Algorithmica 80(4), 1170–1190 (2018)

    Article  MathSciNet  Google Scholar 

  9. Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A.: Approximating minimum Manhattan networks in higher dimensions. Algorithmica 71(1), 36–52 (2015)

    Article  MathSciNet  Google Scholar 

  10. Demaine, E.D., Harmon, D., Iacono, J., Kane, D., Pătraşcu, M.: The geometry of binary search trees. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 496–505. SIAM (2009)

    Google Scholar 

  11. Demaine, E.D., Harmon, D., Iacono, J., Pătraşcu, M.: Dynamic optimality-almost. SIAM J. Comput. 37(1), 240–251 (2007)

    Article  MathSciNet  Google Scholar 

  12. Dodis, Y., Khanna, S.: Design networks with bounded pairwise distance. In: Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, pp. 750–759 (1999)

    Google Scholar 

  13. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximation algorithms for directed Steiner forest. J. Comput. Syst. Sci. 78(1), 279–292 (2012)

    Article  MathSciNet  Google Scholar 

  14. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. North-Holland Publishing Co., NLD (2004)

    Google Scholar 

  15. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum Manhattan network. Nordic J. Comput. 8(2), 219–232 (2001). http://dl.acm.org/citation.cfm?id=766533.766536

  16. Guo, Z., Sun, H., Zhu, H.: A fast 2-approximation algorithm for the minimum Manhattan network problem. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 212–223. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8_21

    Chapter  Google Scholar 

  17. Harmon, D.D.K.: New bounds on optimal binary search trees. Ph.D. thesis, Massachusetts Institute of Technology (2006)

    Google Scholar 

  18. Iacono, J., Langerman, S.: Weighted dynamic finger in binary search trees. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 672–691. SIAM (2016)

    Google Scholar 

  19. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM (JACM) 32(3), 652–686 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Damerius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antoniadis, A. et al. (2021). On Minimum Generalized Manhattan Connections. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83508-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83507-1

  • Online ISBN: 978-3-030-83508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics