Skip to main content

Better Distance Labeling for Unweighted Planar Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12808))

Included in the following conference series:

Abstract

A distance labeling scheme is an assignment of labels, that is, binary strings, to all nodes of a graph, so that the distance between any two nodes can be computed from their labels without any additional information about the graph. The goal is to minimize the maximum length of a label as a function of the number of nodes. A major open problem in this area is to determine the complexity of distance labeling in unweighted planar (undirected) graphs. It is known that, in such a graph on n nodes, some labels must consist of \(\varOmega (n^{1/3})\) bits, but the best known labeling scheme constructs labels of length \(\mathcal {O}(\sqrt{n}\log n)\) [Gavoille, Peleg, Pérennes, and Raz, J. Algorithms, 2004]. For weighted planar graphs with edges of length polynomial in n, we know that labels of length \(\varOmega (\sqrt{n}\log n)\) are necessary [Abboud and Dahlgaard, FOCS 2016]. Surprisingly, we do not know if distance labeling for weighted planar graphs with edges of length polynomial in n is harder than distance labeling for unweighted planar graphs. We prove that this is indeed the case by designing a distance labeling scheme for unweighted planar graphs on n nodes with labels consisting of \(\mathcal {O}(\sqrt{n})\) bits with a simple and (in our opinion) elegant method. We augment the construction with a mechanism that allows us to compute the distance between two nodes in only polylogarithmic time while increasing the length by \(\mathcal {O}(\sqrt{n\log n})\). The previous scheme required \(\varOmega (\sqrt{n})\) time to answer a query in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All logarithms are in base 2.

  2. 2.

    Left/right is defined using a fixed planar embedding by considering how the path from u to v emanates from the path from u to \(y_{f}\). The tree inherits the embedding from the graph, and for two nodes of a tree we can check being on the path or left/right by operating on their pre- and post-order number.

References

  1. Abboud, A., Dahlgaard, S.: Popular conjectures as a barrier for dynamic planar graph algorithms. In: 57th FOCS, pp. 477–486 (2016)

    Google Scholar 

  2. Abboud, A., Gawrychowski, P., Mozes, S., Weimann, O.: Near-optimal compression for the planar graph metric. In: 29th SODA, pp. 530–549 (2018)

    Google Scholar 

  3. Alon, N., Nenadov, R.: Optimal induced universal graphs for bounded-degree graphs. In: 28th SODA, pp. 1149–1157 (2017)

    Google Scholar 

  4. Alstrup, S., Dahlgaard, S., Knudsen, M.B.T.: Optimal induced universal graphs and adjacency labeling for trees. In: 56th FOCS, pp. 1311–1326 (2015)

    Google Scholar 

  5. Alstrup, S., Dahlgaard, S., Knudsen, M.B.T., Porat, E.: Sublinear distance labeling. In: 24th ESA, pp. 5:1–5:15 (2016)

    Google Scholar 

  6. Alstrup, S., Gavoille, C., Halvorsen, E.B., Petersen, H.: Simpler, faster and shorter labels for distances in graphs. In: 27th SODA, pp. 338–350 (2016)

    Google Scholar 

  7. Alstrup, S., Gørtz, I.L., Halvorsen, E.B., Porat, E.: Distance labeling schemes for trees. In: 43rd ICALP, pp. 132:1–132:16 (2016)

    Google Scholar 

  8. Alstrup, S., Kaplan, H., Thorup, M., Zwick, U.: Adjacency labeling schemes and induced-universal graphs. In: 47th STOC, pp. 625–634 (2015)

    Google Scholar 

  9. Bonamy, M., Gavoille, C., Pilipczuk, M.: Shorter labeling schemes for planar graphs. In: 30th SODA, pp. 446–462 (2020)

    Google Scholar 

  10. Bonichon, N., Gavoille, C., Labourel, A.: Short labels by traversal and jumping. Electron. Notes Discret. Math. 28, 153–160 (2007)

    Article  MathSciNet  Google Scholar 

  11. Cabello, S.: Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. ACM Trans. Algorithms 15(2), 21:1-21:38 (2019)

    Article  MathSciNet  Google Scholar 

  12. Charalampopoulos, P., Gawrychowski, P., Mozes, S., Weimann, O.: Almost optimal distance oracles for planar graphs. In: 51st STOC, pp. 138–151. ACM (2019)

    Google Scholar 

  13. Dujmovic, V., Esperet, L., Gavoille, C., Joret, G., Micek, P., Morin, P.: Adjacency labelling for planar graphs (and beyond). In: 61st FOCS, pp. 577–588. IEEE (2020)

    Google Scholar 

  14. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2), 194–203 (1975)

    Article  MathSciNet  Google Scholar 

  15. Freedman, O., Gawrychowski, P., Nicholson, P.K., Weimann, O.: Optimal distance labeling schemes for trees. In: 36th PODC, pp. 185–194 (2017)

    Google Scholar 

  16. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algorithms 53(1), 85–112 (2004)

    Article  MathSciNet  Google Scholar 

  17. Gawrychowski, P., Kosowski, A., Uznański, P.: Sublinear-space distance labeling using hubs. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 230–242. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53426-7_17

    Chapter  Google Scholar 

  18. Gawrychowski, P., Mozes, S., Weimann, O., Wulff-Nilsen, C.: Better tradeoffs for exact distance oracles in planar graphs. In: 29th SODA, pp. 515–529. SIAM (2018)

    Google Scholar 

  19. Graham, R.L., Pollak, H.O.: On embedding graphs in squashed cubes. In: Alavi, Y., Lick, D.R., White, A.T. (eds.) Graph Theory and Applications. LNM, vol. 303, pp. 99–110. Springer, Heidelberg (1972). https://doi.org/10.1007/BFb0067362

    Chapter  Google Scholar 

  20. Hsu, T.-H., Lu, H.-I.: An optimal labeling for node connectivity. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 303–310. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6_32

    Chapter  Google Scholar 

  21. Jacobson, G.: Space-efficient static trees and graphs. In: 30th FOCS, pp. 549–554. IEEE Computer Society (1989)

    Google Scholar 

  22. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discret. Math. 5(4), 596–603 (1992)

    Article  MathSciNet  Google Scholar 

  23. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM J. Comput. 34(1), 23–40 (2004)

    Article  MathSciNet  Google Scholar 

  24. Klein, P.N., Mozes, S., Sommer, C.: Structured recursive separator decompositions for planar graphs in linear time. In: 45th STOC, pp. 505–514. ACM (2013)

    Google Scholar 

  25. Korman, A.: Labeling schemes for vertex connectivity. ACM Trans. Algorithms 6(2), 39:1-39:10 (2010)

    Article  MathSciNet  Google Scholar 

  26. Kosowski, A., Uznański, P., Viennot, L.: Hardness of exact distance queries in sparse graphs through hub labeling. In: 38th PODC, pp. 272–279 (2019)

    Google Scholar 

  27. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MathSciNet  Google Scholar 

  28. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32(3), 265–279 (1986)

    Article  MathSciNet  Google Scholar 

  29. Moon, J.W.: On Minimal \(n\)-Universal Graphs. vol. 7, pp. 32–33. Cambridge University Press, Cambridge (1965)

    Google Scholar 

  30. Peleg, D.: Informative labeling schemes for graphs. Theor. Comput. Sci. 340(3), 577–593 (2005)

    Article  MathSciNet  Google Scholar 

  31. Petersen, C., Rotbart, N., Simonsen, J.G., Wulff-Nilsen, C.: Near-optimal adjacency labeling scheme for power-law graphs. In: 43rd ICALP, pp. 133:1–133:15 (2016)

    Google Scholar 

  32. Weimann, O., Peleg, D.: A note on exact distance labeling. Inf. Process. Lett. 111(14), 671–673 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Gawrychowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gawrychowski, P., Uznański, P. (2021). Better Distance Labeling for Unweighted Planar Graphs. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83508-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83507-1

  • Online ISBN: 978-3-030-83508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics