Skip to main content

Branching Frequency and Markov Entropy of Repetition-Free Languages

  • Conference paper
  • First Online:
Book cover Developments in Language Theory (DLT 2021)

Abstract

We define a new quantitative measure for an arbitrary factorial language: the entropy of a random walk in the prefix tree associated with the language; we call it Markov entropy. We relate Markov entropy to the growth rate of the language and the parameters of branching of its prefix tree. We show how to compute Markov entropy for a regular language. Finally, we develop a framework for experimental study of Markov entropy by modelling random walks and present the results of experiments with power-free and Abelian-power-free languages.

Supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2021-1387).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Non-uniform distributions are also used in many applications but we do not consider them here.

  2. 2.

    Note that it is not possible in general to find the roots of polynomials exactly.

References

  1. Aberkane, A., Currie, J.D., Rampersad, N.: The number of ternary words avoiding abelian cubes grows exponentially. J. Integer Seq. 7(2) (2004)

    Google Scholar 

  2. Carpi, A.: On the number of Abelian square-free words on four letters. Discrete Appl. Math. 81, 155–167 (1998)

    Article  MathSciNet  Google Scholar 

  3. Carpi, A.: On Dejean’s conjecture over large alphabets. Theor. Comput. Sci. 385, 137–151 (1999)

    Article  MathSciNet  Google Scholar 

  4. Crochemore, M., Mignosi, F., Restivo, A., Salemi, S.: Data compression using antidictionaries. Proc. IEEE 88(11), 1756–1768 (2000)

    Article  Google Scholar 

  5. Currie, J.D.: The number of binary words avoiding abelian fourth powers grows exponentially. Theor. Comput. Sci. 319, 441–446 (2004)

    Article  MathSciNet  Google Scholar 

  6. Currie, J.D., Rampersad, N.: A proof of Dejean’s conjecture. Math. Comp. 80, 1063–1070 (2011)

    Article  MathSciNet  Google Scholar 

  7. Dejean, F.: Sur un théorème de Thue. J. Combin. Theor. Ser. A 13, 90–99 (1972)

    Article  MathSciNet  Google Scholar 

  8. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. J. Combin. Theory. Ser. A 27, 181–185 (1979)

    Article  MathSciNet  Google Scholar 

  9. Fekete, M.: Über der Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Zeitschrift 17, 228–249 (1923)

    Article  MathSciNet  Google Scholar 

  10. Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math. Syst. Theor. 1, 1–49 (1967)

    Article  MathSciNet  Google Scholar 

  11. Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  12. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_62

    Chapter  Google Scholar 

  13. Kolpakov, R., Rao, M.: On the number of Dejean words over alphabets of 5, 6, 7, 8, 9 and 10 letters. Theor. Comput. Sci. 412, 6507–6516 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kosolobov, D.: Online detection of repetitions with backtracking. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 295–306. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0_25

    Chapter  Google Scholar 

  15. Lyons, R., Peres, Y.: Probability on Trees and Networks, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

    Book  Google Scholar 

  16. Mohammad-Noori, M., Currie, J.D.: Dejean’s conjecture and Sturmian words. Eur. J. Comb. 28, 876–890 (2007)

    Article  MathSciNet  Google Scholar 

  17. Moulin-Ollagnier, J.: Proof of Dejean’s conjecture for alphabets with \(5,6,7,8,9,10\) and \(11\) letters. Theor. Comput. Sci. 95, 187–205 (1992)

    Article  MathSciNet  Google Scholar 

  18. Pansiot, J.J.: A propos d’une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7, 297–311 (1984)

    Article  MathSciNet  Google Scholar 

  19. Petrova, E.A., Shur, A.M.: Branching densities of cube-free and square-free words. Algorithms 14(4), 126 (2021)

    Article  Google Scholar 

  20. Rao, M.: Last cases of Dejean’s conjecture. Theor. Comput. Sci. 412, 3010–3018 (2011)

    Article  MathSciNet  Google Scholar 

  21. Rissanen, J.J.: Generalized Kraft inequality and arithmetic coding. IBM J. Res. Dev. 20, 198–203 (1976)

    Article  MathSciNet  Google Scholar 

  22. Samsonov, A.V., Shur, A.M.: On Abelian repetition threshold. RAIRO Theor. Inf. Appl. 46, 147–163 (2012)

    Article  MathSciNet  Google Scholar 

  23. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  24. Shur, A.M.: Combinatorial complexity of regular languages. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 289–301. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79709-8_30

    Chapter  Google Scholar 

  25. Shur, A.M.: Two-sided bounds for the growth rates of power-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 466–477. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_38

    Chapter  Google Scholar 

  26. Shur, A.M.: Growth rates of complexity of power-free languages. Theor. Comput. Sci. 411, 3209–3223 (2010)

    Article  MathSciNet  Google Scholar 

  27. Shur, A.M.: Growth properties of power-free languages. Comput. Sci. Rev. 6, 187–208 (2012)

    Article  Google Scholar 

  28. Shur, A.M., Gorbunova, I.A.: On the growth rates of complexity of threshold languages. RAIRO Theor. Inf. Appl. 44, 175–192 (2010)

    Article  MathSciNet  Google Scholar 

  29. Markov entropy of repetition-free languages–statistics (2021). https://tinyurl.com/2j36b6j7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arseny M. Shur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrova, E.A., Shur, A.M. (2021). Branching Frequency and Markov Entropy of Repetition-Free Languages. In: Moreira, N., Reis, R. (eds) Developments in Language Theory. DLT 2021. Lecture Notes in Computer Science(), vol 12811. Springer, Cham. https://doi.org/10.1007/978-3-030-81508-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81508-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81507-3

  • Online ISBN: 978-3-030-81508-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics