Skip to main content

Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '20

Abstract

The microscopic structure of porous walls modulates the turbulent flow above. The standard approach, the volume-averaged modelling of the porous wall, does not resolve the pore structure. To systematically link geometric characteristics with flow properites, direct numerical simulations are conducted which are fully-resolving the microscopic structure. A high-order spectral/hp element solver is adopted to solve the incompressible Navier-Stokes equations. Resolving the full energy-spectra relies on a zonal polynomial refinement based on a conforming mesh. A low and a high porosity case with in-line arrays of cylinders are analysed for two Reynolds numbers. The peak in the streamwise energy spectra is shifted towards the pore unit length for both cases. Proper Orthogonal Decomposition (POD) shows that the fluctuations in the porous wall are linked to the structures above. Q2 structures are linked with blowing events and Q4 structures with suction events in the first pore row. The numerical solver Nektar exhibits an excellent scalability up to 96k cores on “Hazel Hen” where a slightly improved performance is observed on the brand new HPE “Hawk” system. Strong scaling tests indicate an efficiency of 70\(\%\) with around 5, 000 mesh-nodes per core, which indicates a high potential for an adequate use of a HPC platform to investigate turbulent flows above porous walls while resolving the pore structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J.E. Lombard, D. Ekelschot et al., Nektar++: an open-source spectral/HP element framework. Comput. Phys. Commun. 192, 205–219 (2015)

    Article  Google Scholar 

  2. X. Chu, W. Chang, S. Pandey, J. Luo, B. Weigand, E. Laurien, A computationally light data-driven approach for heat transfer and hydraulic characteristics modeling of supercritical fluids: From dns to dnn. Int. J. Heat Mass Transf. 123, 629–636 (2018)

    Article  Google Scholar 

  3. X. Chu, E. Laurien, D.M. McEligot, Direct numerical simulation of strongly heated air flow in a vertical pipe. Int. J. Heat Mass Transf. 101, 1163–1176 (2016)

    Article  Google Scholar 

  4. X. Chu, E. Laurien, S. Pandey, Direct numerical simulation of heated pipe flow with strong property variation, in: High Performance Computing in Science and Engineering 2016 (Springer, Heidelberg, 2016), pp. 473–486

    Google Scholar 

  5. X. Chu, B. Weigand, V. Vaikuntanathan, Flow turbulence topology in regular porous media: from macroscopic to microscopic scale with direct numerical simulation. Phys. Fluids 30(6), 065,102 (2018)

    Article  Google Scholar 

  6. X. Chu, Y. Wu, U. Rist, B. Weigand, Instability and transition in an elementary porous medium. Phys. Rev. Fluids 5(4), 044,304 (2020)

    Article  Google Scholar 

  7. X. Chu, G. Yang, S. Pandey, B. Weigand, Direct numerical simulation of convective heat transfer in porous media. Int. J. Heat Mass Transf. 133, 11–20 (2019)

    Article  Google Scholar 

  8. C. Evrim, X. Chu, E. Laurien, Analysis of thermal mixing characteristics in different t-junction configurations. Int. J. Heat Mass Transf. 158, 120,019 (2020)

    Article  Google Scholar 

  9. F. Föll, S. Pandey, X. Chu, C.D. Munz, E. Laurien, B. Weigand, High-fidelity direct numerical simulation of supercritical channel flow using discontinuous Galerkin spectral element method, in: High Performance Computing in Science and Engineering’18 (Springer, Heidelberg, 2019), pp. 275–289

    Google Scholar 

  10. J. Jimenez, M. Uhlmann, A. Pinelli, G. Kawahara, Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89–117 (2001)

    Article  Google Scholar 

  11. Y. Jin, M.F. Uth, A.V. Kuznetsov, H. Herwig, Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study. J. Fluid Mech. 766, 76–103 (2015)

    Article  Google Scholar 

  12. Y. Kuwata, K. Suga, Transport mechanism of interface turbulence over porous and rough walls. Flow Turbul. Combust. 97(4), 1071–1093 (2016)

    Article  Google Scholar 

  13. D.M. McEligot, X. Chu, J.H. Bae, E. Laurien, J.Y. Yoo, Some observations concerning “laminarization’’ in heated vertical tubes. Int. J. Heat Mass Transf. 163, 120,101 (2020)

    Article  Google Scholar 

  14. D.M. McEligot, X. Chu, R.S. Skifton, E. Laurien, Internal convective heat transfer to gases in the low-reynolds-number “turbulent’’ range. Int. J. Heat Mass Transf. 121, 1118–1124 (2018)

    Article  Google Scholar 

  15. S. Pandey, X. Chu, E. Laurien, Investigation of in-tube cooling of carbon dioxide at supercritical pressure by means of direct numerical simulation. Int. J. Heat Mass Transf. 114, 944–957 (2017)

    Article  Google Scholar 

  16. S. Pandey, X. Chu, E. Laurien, Numerical analysis of heat transfer during cooling of supercritical fluid by means of direct numerical simulation, in: High Performance Computing in Science and Engineering’17 (2018), pp. 241–254

    Google Scholar 

  17. S. Pandey, X. Chu, E. Laurien, B. Weigand, Buoyancy induced turbulence modulation in pipe flow at supercritical pressure under cooling conditions. Phys. Fluids 30(6), 065,105 (2018)

    Article  Google Scholar 

  18. S. Pandey, X. Chu, B. Weigand, E. Laurien, J. Schumacher, Relaminarized and recovered turbulence under nonuniform body forces. Phys. Rev. Fluids 5(10), 104,604 (2020)

    Article  Google Scholar 

  19. S. Pandey, E. Laurien, X. Chu, A modified convective heat transfer model for heated pipe flow of supercritical carbon dioxide. Int. J. Therm. Sci. 117, 227–238 (2017)

    Article  Google Scholar 

  20. M. Rosti, L. Brandt, A. Pinelli, Turbulent channel flow over an anisotropic porous wall-drag increase and reduction. J. Fluid Mech. 842, 381–394 (2018)

    Article  MathSciNet  Google Scholar 

  21. K. Suga, Y. Nakagawa, M. Kaneda, Spanwise turbulence structure over permeable walls. J. Fluid Mech. 822, 186–201 (2017)

    Article  MathSciNet  Google Scholar 

  22. A. Terzis, I. Zarikos, K. Weishaupt, G. Yang, X. Chu, R. Helmig, B. Weigand, Microscopic velocity field measurements inside a regular porous medium adjacent to a low reynolds number channel flow. Phys. Fluids 31(4), 042,001 (2019)

    Article  Google Scholar 

  23. W. Wang, C. Pan, J. Wang, Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence. Exp. Fluids 59(1), 1 (2018)

    Article  Google Scholar 

  24. W. Wang, C. Pan, J. Wang, Multi-component variational mode decomposition and its application on wall-bounded turbulence. Exp. Fluids 60(6), 95 (2019)

    Article  Google Scholar 

  25. W. Wang, C. Pan, J. Wang, Wall-normal variation of spanwise streak spacing in turbulent boundary layer with low-to-moderate reynolds number. Entropy 21(1), 24 (2019)

    Article  Google Scholar 

  26. B.D. Wood, X. He, S.V. Apte, Modeling turbulent flows in porous media. Annual Review of Fluid Mechanics 52(1), null (2020)

    Article  Google Scholar 

  27. G. Yang, X. Chu, V. Vaikuntanathan, S. Wang, J. Wu, B. Weigand, A. Terzis, Droplet mobilization at the walls of a microfluidic channel. Phys. Fluids 32(1), 012,004 (2020)

    Article  Google Scholar 

  28. G. Yang, B. Weigand, Investigation of the Klinkenberg effect in a micro/nanoporous medium by direct simulation Monte Carlo method. Phys. Rev. Fluids 3(4), 044,201 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project Number 327154368—SFB 1313. It is supported by MWK (Ministerium für Wissenschaft und Kunst) of Baden-Württemberg as a part of the project DISS (Data-integrated Simulation Science). The authors gratefully appreciate the access to the high performance computing facility ‘Hazel Hen’ and ‘HAWK’ at HLRS, Stuttgart and would like to thank the teams of HLRS, Cray and HPE for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, X., Wang, W., Müller, J., Von Schöning, H., Liu, Y., Weigand, B. (2021). Turbulence Modulation and Energy Transfer in Turbulent Channel Flow Coupled with One-Side Porous Media. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '20. Springer, Cham. https://doi.org/10.1007/978-3-030-80602-6_24

Download citation

Publish with us

Policies and ethics