Skip to main content

Embodied Perception and Action in Real and Virtual Environments

  • Chapter
  • First Online:
Handbook of Embodied Psychology

Abstract

In this chapter, we argue that the body is an essential factor in how people scale their perceptions of and actions in both real and virtual environments. We first review work showing that the size and posture of the body can influence perception and decisions about action in the real world. For example, the perception of whether real-world apertures can be walked through is scaled to the current position of the body (i.e., holding the body in a wider stance leads to the need for larger apertures in order to pass). We then show that conveying a different visual body size to observers using virtual reality can produce changes in the perception of scale in virtual environments. For example, observers may rescale their perceptions of what they can step over when embodying a different sized foot in virtual reality. Finally, states of the body, such as emotions, may also play a role in perceptions of certain aspects of the scale of real and virtual environments. Overall, we argue that embodiment contributes to perceptual and action processes, allowing us to scale the world according to our body’s current action capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adolph, K. E., Eppler, M. A., & Gibson, E. J. (1993). Development of perception of affordances. Advances in Infancy Research, 8, 51–98.

    Google Scholar 

  • Aim, F., Lonjon, G., Hannouche, D., & Nizard, R. (2016). Effectiveness of virtual reality training in orthopaedic surgery. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 32, 224–232.

    Article  Google Scholar 

  • Alaker, M., Wynn, G. R., & Arulampalam, T. (2016). Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis. International Journal of Surgery, 29, 85–94.

    Article  PubMed  Google Scholar 

  • Alaraj, A., Lemole, M. G., Finkle, J. H., Yudkowsky, R., Wallace, A., Luciano, C., Banerjee, P. P., Rizzi, S. H., & Charbel, F. T. (2011). Virtual reality training in neurosurgery: Review of current status and future applications. Surgical Neurology International, 2, 52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alter, A. L., & Balcetis, E. (2011). Fondness makes the distance grow shorter: Desired locations seem closer because they seem more vivid. Journal of Experimental Social Psychology, 47, 16–21.

    Article  Google Scholar 

  • Argelaguet, F., Hoyet, L., Trico, M. & Lécuyer, A. (2016). The role of interaction in virtual embodiment: Effects of the virtual hand representation. In: Proceedings of the 2016 IEEE virtual reality (VR) (pp. 3–10). IEEE.

    Google Scholar 

  • Balcetis, E. (2016). Approach and avoidance as organizing structures for motivated distance perception. Emotion Review, 8, 115–128.

    Article  Google Scholar 

  • Balcetis, E., & Dunning, D. (2007). Cognitive dissonance and the perception of natural environments. Psychological Science, 18, 917–921.

    Article  PubMed  Google Scholar 

  • Balcetis, E., & Dunning, D. (2010). Wishful seeing: More desired objects are seen as closer. Psychological Science, 21, 147–152.

    Article  PubMed  Google Scholar 

  • Banakou, D., Groten, R., & Slater, M. (2013). Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proceedings of the National Academy of Sciences, 110, 12846–12851.

    Article  Google Scholar 

  • Barsalou, L. W. (2008). Grounded Cognition. Annual Reviews in Psychology, 59, 617–645.

    Article  Google Scholar 

  • Bernardi, N. F., Marino, B. F. M., Maravita, A., Castelnuovo, G., Tebano, R., & Bricolo, E. (2013). Grasping in wonderland: Altering the visual size of the body recalibrates the body schema. Experimental Brain Research, 226, 585–594.

    Article  PubMed  Google Scholar 

  • Buck, L. E., Young, M. K., & Bodenheimer, B. (2018). A comparison of distance estimation in HMD-based virtual environments with different HMD-based conditions. ACM Transactions on Applied Perception (TAP), 15, 21.

    Google Scholar 

  • Changizi, M. A., & Hall, W. G. (2001). Thirst modulates a perception. Perception, 30, 1489–1497.

    Article  PubMed  Google Scholar 

  • Choi, S., Jung, K., & Noh, S. D. (2015). Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurrent Engineering, 23, 40–63.

    Article  Google Scholar 

  • Clerkin, E. M., & Teachman, B. A. (2008). Perceptual and cognitive biases in individuals with body dysmorphic disorder symptoms. Cognition and Emotion, 22, 1327–1339.

    Article  PubMed  Google Scholar 

  • Clore, G. L., & Huntsinger, J. R. (2009). How the object of affect guides its impact. Emotion Review, 1, 39–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole, S., Balcetis, E., & Dunning, D. (2013). Affective signals of threat increase perceived proximity. Psychological Science, 24, 34–40.

    Article  PubMed  Google Scholar 

  • Collier, E. S., & Lawson, R. (2017). It’s out of my hands! grasping capacity may not influence perceived object size. Journal of Experimental Psychology: Human Perception and Performance, 43, 749.

    PubMed  Google Scholar 

  • Creem-Regehr, S. H., Payne, B. S., Rand, K. M., & Hansen, G. (2014). Scaling space with the mirror illusion: The influence of body plasticity on perceived affordances. Psychonomic Bulletin & Review, 21, 398–405.

    Article  Google Scholar 

  • Creem-Regehr, S. H., Gill, D. M., Pointon, G. D., Bodenheimer, B., & Stefanucci, J. K. (2019). Mind the gap: Gap affordance judgments of children, teens, and adults in an immersive virtual environment. Frontiers in Robotics and AI, 6, 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Creem-Regehr, S. H., Stefanucci, J. K. & Thompson, W. B. (2015a). Perceiving absolute scale in virtual environments: How theory and application have mutually informed the role of body-based perception. In: Psychology of learning and motivation (vol. 62, pp. 195–224). Elsevier.

    Google Scholar 

  • Creem-Regehr, S. H., Stefanucci, J. K., Thompson, W. B., Nash, N. & McCardell, M. (2015b). Egocentric distance perception in the Oculus Rift (DK2). In: Proceedings of the ACM SIGGRAPH symposium on applied perception (pp. 47–50).

    Google Scholar 

  • Cruz-Neira, C., Sandin, D. J. & DeFanti, T. A. (1993). Surround-screen projection-based virtual reality: The design and implementation of the cave. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques (pp. 135–142).

    Google Scholar 

  • Cutting, J. E. & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In: Perception of space and motion (pp. 69–117). Academic Press.

    Google Scholar 

  • Davoli, C. C., Brockmole, J. R., & Witt, J. K. (2012). Compressing perceived distance with remote tool-use: Real, imagined, and remembered. Journal of Experimental Psychology: Human Perception and Performance, 38, 80.

    PubMed  Google Scholar 

  • Day, B., Ebrahimi, E., Hartman, L. S., Pagano, C. C., Robb, A. C., & Babu, S. V. (2019). Examining the effects of altered avatars on perception-action in virtual reality. Journal of Experimental Psychology: Applied, 25, 1.

    PubMed  Google Scholar 

  • Debarba, H. G., Boulic, R., Salomon, R., Blanke, O., & Herbelin, B. (2018). Self-attribution of distorted reaching movements in immersive virtual reality. Computers & Graphics, 76, 142–152.

    Article  Google Scholar 

  • Deschamps, T., Hug, F., Hodges, P. W., & Tucker, K. (2014). Influence of experimental pain on the perception of action capabilities and performance of a maximal single-leg hop. The Journal of Pain, 15, 271-e1.

    Article  PubMed  Google Scholar 

  • Durgin, F. H., Baird, J. A., Greenburg, M., Russell, R., Shaughnessy, K., & Waymouth, S. (2009). Who is being deceived? the experimental demands of wearing a backpack. Psychonomic Bulletin & Review, 16, 964–969.

    Article  Google Scholar 

  • Durgin, F. H., DeWald, D., Lechich, S., Li, Z., & Ontiveros, Z. (2011). Action and motivation: Measuring perception or strategies? Psychonomic Bulletin & Review, 18, 1077–1082.

    Article  Google Scholar 

  • Dutã, M., Amariei, C. I., Bogdan, C. M., Popovici, D. M., Ionescu, N., & Nuca, C. I. (2011). An overview of virtual and augmented reality in dental education. Oral Health Dent Manag, 10, 42–49.

    Google Scholar 

  • Ebrahimi, E., Hartman, L. S., Robb, A., Pagano, C. C. & Babu, S. V. (2018). Investigating the effects of anthropomorphic fidelity of self-avatars on near field depth perception in immersive virtual environments. In: 2018 IEEE conference on virtual reality and 3D user interfaces (VR) (pp. 1–8). IEEE.

    Google Scholar 

  • Ephraim, P. L., Wegener, S. T., MacKenzie, E. J., Dillingham, T. R., & Pezzin, L. E. (2005). Phantom pain, residual limb pain, and back pain in amputees: Results of a national survey. Archives of Physical Medicine and Rehabilitation, 86, 1910–1919.

    Article  PubMed  Google Scholar 

  • Felnhofer, A., Kothgassner, O. D., Schmidt, M., Heinzle, A.-K., Beutl, L., Hlavacs, H., & Kryspin-Exner, I. (2015). Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. International Journal of Human-Computer Studies, 82, 48–56.

    Article  Google Scholar 

  • Ferrer-Garcia, M., & Gutierrez-Maldonado, J. (2012). The use of virtual reality in the study, assessment, and treatment of body image in eating disorders and nonclinical samples: A review of the literature. Body Image, 9, 1–11.

    Article  PubMed  Google Scholar 

  • Firestone, C., & Scholl, B. J. (2016). Cognition does not affect perception: Evaluating the evidence for “top-down” effects. Behavioral and Brain Sciences, 39, E229.

    Article  PubMed  Google Scholar 

  • Franchak, J. M., & Adolph, K. E. (2014). Gut estimates: Pregnant women adapt to changing possibilities for squeezing through doorways. Attention, Perception, & Psychophysics, 76, 460–472.

    Article  Google Scholar 

  • Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. In: The international scientific conference on elearning and software for education (vol. 1, p. 133). National Defence University.

    Google Scholar 

  • Garcia-Valle, G., Ferre, M., Breñosa, J., & Vargas, D. (2017). Evaluation of presence in virtual environments: Haptic vest and user’s haptic skills. IEEE Access, 6, 7224–7233.

    Article  Google Scholar 

  • Gardner, R. M., & Brown, D. L. (2014). Body size estimation in anorexia nervosa: A brief review of findings from 2003 through 2013. Psychiatry Research, 219, 407–410.

    Article  PubMed  Google Scholar 

  • Geuss, M. N., Stefanucci, J. K., de Benedictis-Kessner, J., & Stevens, N. R. (2010). A balancing act: Physical balance, through arousal, influences size perception. Attention, Perception, & Psychophysics, 72, 1890–1902.

    Article  Google Scholar 

  • Geuss, M. N., Stefanucci, J. K., Creem-Regehr, S. H., & Thompson, W. B. (2010a). Can I pass?: Using affordances to measure perceived size in virtual environments. In: Proceedings of the 7th symposium on applied perception in graphics and visualization (pp. 61–64). APGV ’10.

    Google Scholar 

  • Geuss, M. N., McCardell, M. J., & Stefanucci, J. K. (2016). Fear similarly alters perceptual estimates of and actions over gaps. PLoS One, 11, e0158610.

    Google Scholar 

  • Gibson, J. J. (1950). The perception of the visual world. Houghton Mifflin.

    Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.

    Google Scholar 

  • Glenberg, A. M., Witt, J. K., & Metcalfe, J. (2013). From the revolution to embodiment: 25 years of cognitive psychology. Perspectives on Psychological Science, 8, 573–585.

    Article  PubMed  Google Scholar 

  • Graydon, M. M., Linkenauger, S. A., Teachman, B. A., & Proffitt, D. R. (2012). Scared stiff: The influence of anxiety on the perception of action capabilities. Cognition & Emotion, 26, 1301–1315.

    Article  Google Scholar 

  • Gurusamy, K., Aggarwal, R., Palanivelu, L., & Davidson, B. (2008). Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. British Journal of Surgery, 95, 1088–1097.

    Article  PubMed  Google Scholar 

  • Hackney, A. L., & Cinelli, M. E. (2013). Young and older adults use body-scaled information during a non-confined aperture crossing task. Experimental Brain Research, 225, 419–429.

    Article  PubMed  Google Scholar 

  • Halberstadt, J., Winkielman, P., Niedenthal, P. M., & Dalle, N. (2009). Emotional conception: How embodied emotion concepts guide perception and facial action. Psychological Science, 20, 1254–1261.

    Article  PubMed  Google Scholar 

  • Jun, E., Stefanucci, J. K., Creem-Regehr, S. H., Geuss, M. N., & Thompson, W. B. (2015). Big foot: Using the size of a virtual foot to scale gap width. ACM Transactions on Applied Perception (TAP), 12, 16.

    Google Scholar 

  • Keizer, A., Smeets, M. A., Dijkerman, H. C., Uzunbajakau, S. A., van Elburg, A., & Postma, A. (2013). Too fat to fit through the door: First evidence for disturbed body-scaled action in anorexia nervosa during locomotion. PLoS One, 8, e64602.

    Google Scholar 

  • Keizer, A., van Elburg, A., Helms, R., & Dijkerman, H. C. (2016). A virtual reality full body illusion improves body image disturbance in anorexia nervosa. PLoS One, 11, e0163921.

    Google Scholar 

  • Kenney, M. P., & Milling, L. S. (2016). The effectiveness of virtual reality distraction for reducing pain: A meta-analysis. Psychology of Consciousness: Theory, Research, and Practice, 3, 199.

    Google Scholar 

  • Kenyon, R. V., Sandin, D., Smith, R. C., Pawlicki, R., & Defanti, T. (2007). Size-constancy in the cave. Presence: Teleoperators and Virtual Environments, 16, 172–187.

    Google Scholar 

  • Klatzky, R. L., Thompson, W. B., Stefanucci, J. K., Gill, D., & McGee, D. K. (2017). The perceptual basis of vast space. Psychonomic Bulletin & Review, 24, 1870–1878.

    Article  Google Scholar 

  • Lawson, G., Salanitri, D., & Waterfield, B. (2016). Future directions for the development of virtual reality within an automotive manufacturer. Applied Ergonomics, 53, 323–330.

    Article  PubMed  Google Scholar 

  • Lele, A. (2013). Virtual reality and its military utility. Journal of Ambient Intelligence and Humanized Computing, 4, 17–26.

    Article  Google Scholar 

  • Lenggenhager, B., Tadi, T., Metzinger, T., & Blanke, O. (2007). Video ergo sum: Manipulating bodily self-consciousness. Science, 317(5841), 1096–1099.

    Article  PubMed  Google Scholar 

  • Lessard, D. A., Linkenauger, S. A., & Proffitt, D. R. (2009). Look before you leap: Jumping ability affects distance perception. Perception, 38, 1863–1866.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis, J. S., Kersten, P., McCabe, C. S., McPherson, K. M., & Blake, D. R. (2007). Body perception disturbance: A contribution to pain in complex regional pain syndrome (CRPS). Pain, 133, 111–119.

    Article  PubMed  Google Scholar 

  • Leyrer, M., Linkenauger, S. A., Bülthoff, H. H., Kloos, U. & Mohler, B. (2011). The influence of eye height and avatars on egocentric distance estimates in immersive virtual environments. In: Proceedings of the ACM SIGGRAPH symposium on applied perception in graphics and visualization (pp. 67–74).

    Google Scholar 

  • Lin, Q., Rieser, J., & Bodenheimer, B. (2012). Stepping over and ducking under: The influence of an avatar on locomotion in an HMD-based immersive virtual environment. In: Proceedings of the ACM symposium on applied perception (pp. 7–10). SAP ’12.

    Google Scholar 

  • Lin, Q., Rieser, J. J., & Bodenheimer, B. (2013). Stepping off a ledge in an HMD-based immersive virtual environment. In: Proceedings of the ACM symposium on applied perception (pp. 107–110). SAP ’13.

    Google Scholar 

  • Lin, Q., Rieser, J., & Bodenheimer, B. (2015). Affordance judgments in HMD-based virtual environments: Stepping over a pole and stepping off a ledge. ACM Transactions on Applied Perception, 12, 6:1–6:21.

    Google Scholar 

  • Linkenauger, S. A., Ramenzoni, V., & Proffitt, D. R. (2010). Illusory shrinkage and growth: Body-based rescaling affects the perception of size. Psychological Science, 21, 1318–1325.

    Article  PubMed  Google Scholar 

  • Linkenauger, S. A., Witt, J. K., & Proffitt, D. R. (2011). Taking a hands-on approach: Apparent grasping ability scales the perception of object size. Journal of Experimental Psychology: Human Perception and Performance, 37, 1432–1441.

    PubMed  Google Scholar 

  • Linkenauger, S. A., Bülthoff, H. H., & Mohler, B. J. (2015). Virtual arm’s reach influences perceived distances but only after experience reaching. Neuropsychologia, 70, 393–401.

    Article  PubMed  Google Scholar 

  • Linkenauger, S. A., Leyrer, M., Bülthoff, H. H., & Mohler, B. J. (2013). Welcome to wonderland: The influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects. PLoS One, 8, e68594.

    Google Scholar 

  • Longo, M. R., Betti, V., Aglioti, S. M., & Haggard, P. (2009). Visually induced analgesia: Seeing the body reduces pain. Journal of Neuroscience, 29, 12125–12130.

    Article  PubMed  Google Scholar 

  • Loomis, J. M., & Knapp, J. M. (2003). Visual perception of egocentric distance in real and virtual environments. In L. J. Hettinger & M. W. Haas (Eds.), Virtual and adaptive environments: Applications, implications, and human performance issues (pp. 21–46). Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18, 906–921.

    PubMed  Google Scholar 

  • Lotze, M., & Moseley, G. L. (2007). Role of distorted body image in pain. Current Rheumatology Reports, 9, 488–496.

    Article  PubMed  Google Scholar 

  • Malloy, K. M., & Milling, L. S. (2010). The effectiveness of virtual reality distraction for pain reduction: A systematic review. Clinical Psychology Review, 30, 1011–1018.

    Article  PubMed  Google Scholar 

  • Mancini, F., Longo, M. R., Kammers, M. P., & Haggard, P. (2011). Visual distortion of body size modulates pain perception. Psychological Science, 22, 325–330.

    Article  PubMed  Google Scholar 

  • Maples-Keller, J. L., Yasinski, C., Manjin, N., & Rothbaum, B. O. (2017). Virtual reality-enhanced extinction of phobias and post-traumatic stress. Neurotherapeutics, 14, 554–563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin-Morales, J., Higuera-Trujillo, J. L., Greco, A., Guixeres, J., Llinares, C., Scilingo, E. P., & Valenza, G. (2018). Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports, 8, 1–15.

    Article  Google Scholar 

  • Mark, L. S., & Vogele, D. (1987). A biodynamic basis for perceived categories of action: A study of sitting and stair climbing. Journal of Motor Behavior, 19, 367–384.

    Article  PubMed  Google Scholar 

  • Martini, M., Perez-Marcos, D., & Sanchez-Vives, M. V. (2014). Modulation of pain threshold by virtual body ownership. European Journal of Pain, 18, 1040–1048.

    Article  PubMed  Google Scholar 

  • Matzke, J., Ziegler, C., Martin, K., Crawford, S., & Sutton, E. (2017). Usefulness of virtual reality in assessment of medical student laparoscopic skill. Journal of Surgical Research, 211, 191–195.

    Article  PubMed  Google Scholar 

  • McBeath, M. K., Morikawa, K., & Kaiser, M. K. (1992). Perceptual bias for forward-facing motion. Psychological Science, 3, 362–367.

    Article  Google Scholar 

  • McManus, E. A., Bodenheimer, B., Streuber, S., De La Rosa, S., Bülthoff, H. H., & Mohler, B. J. (2011). The influence of avatar (self and character) animations on distance estimation, object interaction and locomotion in immersive virtual environments. In: Proceedings of the ACM SIGGRAPH symposium on applied perception in graphics and visualization (pp. 37–44).

    Google Scholar 

  • Meehan, M., Insko, B., Whitton, M., & Brooks, F. P., Jr. (2002). Physiological measures of presence in stressful virtual environments. ACM Transactions on Graphics, 21, 645–652.

    Article  Google Scholar 

  • Meehan, M., Razzaque, S., Insko, B., Whitton, M., & Brooks, F. (2005). Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Applied Psychophysiology and Biofeedback, 30, 239–258.

    Article  PubMed  Google Scholar 

  • Mohler, B. J., Creem-Regehr, S. H., & Thompson, W. B. (2006). The influence of feedback on egocentric distance judgments in real and virtual environments. In: Proceedings of the 3rd symposium on applied perception in graphics and visualization (pp. 9–14). ACM.

    Google Scholar 

  • Mohler, B. J., Bülthoff, H. H., Thompson, W. B., & Creem-Regehr, S. H. (2008). A full-body avatar improves egocentric distance judgments in an immersive virtual environment. In: Proceedings of the 5th symposium on applied perception in graphics and visualization (p. 194). ACM.

    Google Scholar 

  • Mohler, B. J., Creem-Regehr, S. H., Thompson, W. B., & Bülthoff, H. H. (2010). The effect of viewing a self-avatar on distance judgments in an HMD-based virtual environment. Presence: Teleoperators and Virtual Environments, 19, 230–242.

    Google Scholar 

  • Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D. P., Lombard, C. L., & Tremeer, M. A. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22, 183–198.

    Google Scholar 

  • O’Neal, E. E., Jiang, Y., Franzen, L. J., Rahimian, P., Yon, J. P., Kearney, J. K., & Plumert, J. M. (2018). Changes in perception–action tuning over long time scales: How children and adults perceive and act on dynamic affordances when crossing roads. Journal of Experimental Psychology: Human Perception and Performance, 44, 18–26.

    PubMed  Google Scholar 

  • Pallavicini, F., Toniazzi, N., Argenton, L., Aceti, L., & Mantovani, F. (2015). Developing effective virtual reality training for military forces and emergency operators: From technology to human factors. In: International Conference on Modeling and Applied Simulation, MAS 2015 (pp. 206–210). Dime University of Genoa.

    Google Scholar 

  • Peterson, M. A. (1994). Object recognition processes can and do operate before figure–ground organization. Current Directions in Psychological Science, 3, 105–111.

    Article  Google Scholar 

  • Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science, 17, 292–299.

    Article  PubMed  Google Scholar 

  • Philbeck, J. W., & Witt, J. K. (2015). Action-specific influences on perception and post-perceptual processes: Present controversies and future directions. Psychological Bulletin, 141, 1120–1144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piryankova, I. V., Stefanucci, J. K., Romero, J., De La Rosa, S., Black, M. J., & Mohler, B. J. (2014). Can I recognize my body’s weight? the influence of shape and texture on the perception of self. ACM Transactions on Applied Perception (TAP), 11, 13.

    Google Scholar 

  • Piryankova, I. V., Wong, H. Y., Linkenauger, S. A., Stinson, C., Longo, M. R., Bülthoff, H. H., & Mohler, B. J. (2014b). Owning an overweight or underweight body: Distinguishing the physical, experienced and virtual body. PLoS One, 9, e103428.

    Google Scholar 

  • Plumert, J. M. (1995). Relations between children’s overestimation of their physical abilities and accident proneness. Developmental Psychology, 31, 866–876.

    Article  Google Scholar 

  • Plumert, J. M. (2018). Studying the perception-action system as a model system for understanding development. Academic Press.

    Google Scholar 

  • Plumert, J. M., Kearney, J. K., & Cremer, J. F. (2004). Children’s perception of gap affordances: Bicycling across traffic-filled intersections in an immersive virtual environment. Child Development, 75, 1243–1253.

    Article  PubMed  Google Scholar 

  • Plumert, J. M., Kearney, J. K., Cremer, J. F., Recker, K. M., & Strutt, J. (2011). Changes in children’s perception-action tuning over short time scales: Bicycling across traffic-filled intersections in a virtual environment. Journal of Experimental Child Psychology, 108, 322–337.

    Article  PubMed  Google Scholar 

  • Pointon, G., Thompson, C., Creem-Regehr, S., Stefanucci, J., & Bodenheimer, B. (2018). Affordances as a measure of perceptual fidelity in augmented reality. In 2018 IEEE VR workshop on perceptual and cognitive issues in AR (PERCAR) (pp. 1–6).

    Google Scholar 

  • Proffitt, D. R. (2006). Embodied perception and the economy of action. Perspectives on Psychological Science, 1, 110–122.

    Article  PubMed  Google Scholar 

  • Proffitt, D. R., & Linkenauger, S. A. (2013). Perception viewed as a phenotypic expression. In W. Prinz, M. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 171–197). MIT Press.

    Chapter  Google Scholar 

  • Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., & Black, M. J. (2019). The virtual caliper: Rapid creation of metrically accurate avatars from 3D measurements. IEEE Transactions on Visualization and Computer Graphics, 25, 1887–1897.

    Google Scholar 

  • Regia-Corte, T., Marchal, M., & Lécuyer, A. (2010). Can you stand on virtual grounds? A study on postural affordances in virtual reality. In: Proceedings of the 2010 IEEE virtual reality conference (VR) (pp. 207–210). IEEE.

    Google Scholar 

  • Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The perception of egocentric distances in virtual environments: A review. ACM Computing Surveys (CSUR), 46, 23.

    Article  Google Scholar 

  • Riener, C. R., Stefanucci, J. K., Proffitt, D. R., & Clore, G. (2011). An effect of mood on the perception of geographical slant. Cognition and Emotion, 25, 174–182.

    Article  PubMed  Google Scholar 

  • Rieser, J. J., Ashmead, D. H., Talor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19, 675–689.

    Article  PubMed  Google Scholar 

  • Romano, D., & Maravita, A. (2014). The visual size of one’s own hand modulates pain anticipation and perception. Neuropsychologia, 57, 93–100.

    Article  PubMed  Google Scholar 

  • Romano, D., Llobera, J., & Blanke, O. (2016). Size and viewpoint of an embodied virtual body affect the processing of painful stimuli. The Journal of Pain, 17, 350–358.

    Article  PubMed  Google Scholar 

  • Sahm, C. S., Creem-Regehr, S. H., Thompson, W. B., & Willemsen, P. (2005). Throwing versus walking as indicators of distance perception in similar real and virtual environments. ACM Transactions on Applied Perception (TAP), 2, 35–45.

    Article  Google Scholar 

  • Schnall, S., Harber, K. D., Stefanucci, J. K., & Proffitt, D. R. (2008). Social support and the perception of geographical slant. Journal of Experimental Social Psychology, 44, 1246–1255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74.

    Article  Google Scholar 

  • Stefanucci, J. K., & Geuss, M. N. (2009). Big people, little world: The body influences size perception. Perception, 38, 1782–1795.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanucci, J. K., & Geuss, M. N. (2010). Duck! scaling the height of a horizontal barrier to body height. Attention, Perception, & Psychophysics, 72, 1338–1349.

    Article  Google Scholar 

  • Stefanucci, J. K., & Proffitt, D. R. (2009). The roles of altitude and fear in the perception of height. Journal of Experimental Psychology: Human Perception and Performance, 35, 424–438.

    PubMed  Google Scholar 

  • Stefanucci, J. K., & Storbeck, J. (2009). Don’t look down: Emotional arousal elevates height perception. Journal of Experimental Psychology: General, 138, 131–145.

    Article  Google Scholar 

  • Stefanucci, J. K., Proffitt, D. R., Clore, G. L., & Parekh, N. (2008). Skating down a steeper slope: Fear influences the perception of geographical slant. Perception, 37, 321–323.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanucci, J. K., Gagnon, K. T., & Lessard, D. A. (2011). Follow your heart: Emotion adaptively influences perception. Social and Personality Psychology Compass, 5, 296–308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanucci, J. K., Gagnon, K. T., Tompkins, C. L., & Bullock, K. E. (2012). Plunging into the pool of death: Imagining a dangerous outcome influences distance perception. Perception, 41, 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanucci, J. K., Creem-Regehr, S. H., Thompson, W. B., Lessard, D. A., & Geuss, M. N. (2015). Evaluating the accuracy of size perception on screen-based displays: Displayed objects appear smaller than real objects. Journal of Experimental Psychology: Applied, 21, 215–223.

    PubMed  Google Scholar 

  • Stokes, D. (2013). Cognitive penetrability of perception. Philosophy. Compass, 8, 646–663.

    Article  Google Scholar 

  • Storbeck, J., & Clore, G. L. (2008). Affective arousal as information: How affective arousal influences judgments, learning, and memory. Social and Personality Psychology Compass, 2, 1824–1843.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabor, A., O’Daly, O., Gregory, R. W., Jacobs, C., Travers, W., Thacker, M. A., & Moseley, G. L. (2016). Perceptual inference in chronic pain: An investigation into the economy of action hypothesis. The Clinical Journal of Pain, 32, 588–593.

    Article  PubMed  Google Scholar 

  • Tajadura-Jiménez, A., Banakou, D., Bianchi-Berthouze, N., & Slater, M. (2017). Embodiment in a child-like talking virtual body influences object size perception, self-identification, and subsequent real speaking. Scientific Reports, 7, 9637.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teachman, B. A., Stefanucci, J. K., Clerkin, E. M., Cody, M. W., & Proffitt, D. R. (2008). A new mode of fear expression: Perceptual bias in height fear. Emotion, 8, 296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thaler, A., Geuss, M. N., Mölbert, S. C., Giel, K. E., Streuber, S., Romero, J., & Mohler, B. J. (2018). Body size estimation of self and others in females varying in BMI. PLoS One, 13, e0192152.

    Google Scholar 

  • Usoh, M., Arthur, K., Whitton, M., Bastos, R., Steed, A., Brooks, F., & Slater, M. (1999). The visual cliff revisited: A virtual presence study on locomotion. In Proceedings of the second international workshop on presence. University of Essex, Colchester.

    Google Scholar 

  • Van Der Hoort, B., Guterstam, A., & Ehrsson, H. H. (2011). Being barbie: The size of one’s own body determines the perceived size of the world. PLoS One, 6, e20195.

    Google Scholar 

  • van Ulzen, N. R., Semin, G. R., Oudejans, R. R., & Beek, P. J. (2008). Affective stimulus properties influence size perception and the Ebbinghaus illusion. Psychological Research Psychologische Forschung, 72, 304–310.

    Article  PubMed  Google Scholar 

  • Veltkamp, M., Aarts, H., & Custers, R. (2008). Perception in the service of goal pursuit: Motivation to attain goals enhances the perceived size of goal-instrumental objects. Social Cognition, 26, 720–736.

    Article  Google Scholar 

  • Wagman, J. B., Langley, M. D., & Farmer-Dougan, V. (2017). Doggone affordances: Canine perception of affordances for reaching. Psychonomic Bulletin & Review, 24, 1097–1103.

    Article  Google Scholar 

  • Wang, P., Wu, P., Wang, J., Chi, H.-L., & Wang, X. (2018). A critical review of the use of virtual reality in construction engineering education and training. International Journal of Environmental Research and Public Health, 15, 1204.

    Article  PubMed Central  Google Scholar 

  • Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10, 683–703.

    PubMed  Google Scholar 

  • Warren, W. H., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13, 371–383.

    PubMed  Google Scholar 

  • Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20, 201–206.

    Article  Google Scholar 

  • Witt, J. K. (2017). Action potential influences spatial perception: Evidence for genuine top-down effects on perception. Psychonomic Bulletin & Review, 24, 999–1021.

    Article  Google Scholar 

  • Witt, J. K., & Riley, M. A. (2014). Discovering your inner Gibson: Reconciling action-specific and ecological approaches to perception–action. Psychonomic Bulletin & Review, 21, 1353–1370.

    Article  Google Scholar 

  • Witt, J. K., Proffitt, D. R., & Epstein, W. (2005). Tool use affects perceived distance, but only when you intend to use it. Journal of Experimental Psychology: Human Perception and Performance, 31, 880–888.

    PubMed  Google Scholar 

  • Witt, J. K., Linkenauger, S. A., Bakdash, J. Z., Augustyn, J. S., Cook, A., & Proffitt, D. R. (2009). The long road of pain: Chronic pain increases perceived distance. Experimental Brain Research, 192, 145–148.

    Article  PubMed  Google Scholar 

  • Woods, A. J., Philbeck, J. W., & Danoff, J. V. (2009). The various perceptions of distance: An alternative view of how effort affects distance judgments. Journal of Experimental Psychology: Human Perception and Performance, 35, 1104–1117.

    PubMed  Google Scholar 

  • Wraga, M. (1999). The role of eye height in perceiving affordances and object dimensions. Perception & Psychophysics, 61, 490–507.

    Article  Google Scholar 

  • Wu, H., Adams, H., Pointon, G., Stefanucci, J., Creem-Regehr, S., & Bodenheimer, B. (2019). Danger from the deep: A gap affordance study in augmented reality. In: 2019 IEEE conference on virtual reality and 3d user interfaces (VR) (pp. 1775–1779).

    Google Scholar 

  • Yiannakopoulou, E., Nikiteas, N., Perrea, D., & Tsigris, C. (2015). Virtual reality simulators and training in laparoscopic surgery. International Journal of Surgery, 13, 60–64.

    Article  PubMed  Google Scholar 

  • Zadra, J. R., & Clore, G. L. (2011). Emotion and perception: The role of affective information. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 676–685.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanine K. Stefanucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stefanucci, J.K., Saxon, M., Whitaker, M. (2021). Embodied Perception and Action in Real and Virtual Environments. In: Robinson, M.D., Thomas, L.E. (eds) Handbook of Embodied Psychology. Springer, Cham. https://doi.org/10.1007/978-3-030-78471-3_14

Download citation

Publish with us

Policies and ethics