Skip to main content

Two-Way Coupling Between 1D Blood Flow and 3D Tissue Perfusion Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12744))

Abstract

Accurately predicting brain tissue perfusion and infarct volume after an acute ischaemic stroke requires the two-way coupling of perfusion models on multiple scales. We present a method for such two-way coupling of a one-dimensional arterial blood flow model and a three-dimensional tissue perfusion model. The two-way coupling occurs through the pial surface, where the pressure drop between the models is captured using a coupling resistance. The two-way coupled model is used to simulate arterial blood flow and tissue perfusion during an acute ischaemic stroke. Infarct volume is estimated by setting a threshold on the perfusion change. By two-way coupling these two models, the effect of retrograde flow and its effect on tissue perfusion and infarct volume can be captured.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alastruey, J., Moore, S.M., Parker, K.H., David, T., Peiró, J., Sherwin, S.J.: Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models. Int. J. Numer. Methods Fluids 56(8), 1061–1067 (2008). https://doi.org/10.1002/fld.1606

  2. Arrarte Terreros, N., et al.: From perviousness to permeability, modelling and measuring intra-thrombus flow in acute ischemic stroke. J. Biomech. 110001 (2020). https://doi.org/10.1016/j.jbiomech.2020.110001

  3. Boileau, E., et al.: A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Methods Biomed. Eng. 31(10), e02732 (2015). https://doi.org/10.1002/cnm.2732

  4. Chen, C., Bivard, A., Lin, L., Levi, C.R., Spratt, N.J., Parsons, M.W.: Thresholds for infarction vary between gray matter and white matter in acute ischemic stroke: a CT perfusion study. J. Cereb. Blood Flow Metab. 39(3), 536–546 (2019). https://doi.org/10.1177/0271678X17744453

  5. Donkor, E.S.: Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat. 2018, (2018). https://doi.org/10.1155/2018/3238165

  6. El-Bouri, W.K., Payne, S.J.: Multi-scale homogenization of blood flow in 3-dimensional human cerebral microvascular networks. J. Theor. Biol. 380, 40–47 (2015). https://doi.org/10.1016/j.jtbi.2015.05.011

  7. Hall, C.N., et al.: Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494), 55–60 (2014). https://doi.org/10.1038/nature13165

  8. Hodneland, E., et al.: A new framework for assessing subject-specific whole brain circulation and perfusion using MRI-based measurements and a multi-scale continuous flow model. PLOS Comput. Biol. 15(6), e1007073 (2019). https://doi.org/10.1371/journal.pcbi.1007073

  9. Hyde, E.R., et al.: Multi-scale parameterisation of a myocardial perfusion model using whole-organ arterial networks. Ann. Biomed. Eng. 42(4), 797–811 (2014). https://doi.org/10.1007/s10439-013-0951-y

  10. Iadecola, C.: The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96(1), 17–42 (2017). https://doi.org/10.1016/j.neuron.2017.07.030

  11. Józsa, T.I., Padmos, R.M., Samuels, N., El-Bouri, W.K., Hoekstra, A.G., Payne, S.J.: A porous circulation model of the human brain for in silico clinical trials in ischaemic stroke. Interface Focus 11(1), 20190127 (2021). https://doi.org/10.1098/rsfs.2019.0127

  12. Karch, R., Neumann, F., Neumann, M., Schreiner, W.: Staged growth of optimized arterial model trees. Ann. Biomed. Eng. 28(5), 495–511 (2000). https://doi.org/10.1114/1.290, http://link.springer.com/10.1114/1.290

  13. Kimmel, E.R., et al.: Absence of collaterals is associated with larger infarct volume and worse outcome in patients with large vessel occlusion and mild symptoms. J. Stroke Cerebrovasc. Dis. 1–6 (2019). https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.032

  14. Linninger, A., Hartung, G., Badr, S., Morley, R.: Mathematical synthesis of the cortical circulation for the whole mouse brain-part I. theory and image integration. Comput. Biol. Med. 110, 265–275 (2019). https://doi.org/10.1016/j.compbiomed.2019.05.004

  15. Michler, C., et al.: A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model. Int. J. Numer. Methods Biomed. Eng. 29(2), 217–232 (2013). https://doi.org/10.1002/cnm.2520

  16. Olufsen, M.S.: Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circulatory Physiol. 276(1), H257–H268 (1999). https://doi.org/10.1152/ajpheart.1999.276.1.H257

  17. Padmos, R.M., Józsa, T.I., El-Bouri, W.K., Konduri, P.R., Payne, S.J., Hoekstra, A.G.: Coupling one-dimensional arterial blood flow to three-dimensional tissue perfusion models for in silico trials of acute ischaemic stroke. Interface Focus 11(1), 20190125 (2021). https://doi.org/10.1098/rsfs.2019.0125

  18. Perdikaris, P., Grinberg, L., Karniadakis, G.E.: An effective fractal-tree closure model for simulating blood flow in large arterial networks. Ann. Biomed. Eng. 43(6), 1432–1442 (2015). https://doi.org/10.1007/s10439-014-1221-3

  19. Peyrounette, M., Davit, Y., Quintard, M., Lorthois, S.: Multiscale modelling of blood flow in cerebral microcirculation: details at capillary scale control accuracy at the level of the cortex. PLOS ONE 13(1), e0189474 (2018). https://doi.org/10.1371/journal.pone.0189474

  20. Reymond, P., Merenda, F., Perren, F., Ru, D.: Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circulatory Physiol. 297, 208–222 (2009). https://doi.org/10.1152/ajpheart.00037.2009

    Article  Google Scholar 

  21. Sherwin, S.J., Formaggia, L., Peirã O, J., Franke, V.: Computational modelling of 1D blood with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Meth. Fluids 43, 673–700 (2003). https://doi.org/10.1002//d.543

  22. Smith, N.P., Pullan, A.J., Hunter, P.J.: An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62(3), 990–1018 (2002)

    Google Scholar 

  23. Sorimachi, T., Morita, K., Ito, Y., Fujii, Y.: Blood pressure measurement in the artery proximal and distal to an intra-arterial embolus during thrombolytic therapy. J. Neuro Interv. Surg. 3(1), 43–46 (2011). https://doi.org/10.1136/jnis.2010.003061

  24. Tariq, N., Khatri, R.: Leptomeningeal collaterals in acute ischemic stroke. J. Vasc. Interv. Neurol. 1(4), 91–5 (2008). http://www.ncbi.nlm.nih.gov/pubmed/22518231

  25. Yu, H., Huang, G.P., Ludwig, B.R., Yang, Z.: An in-vitro flow study using an artificial circle of willis model for validation of an existing one-dimensional numerical model. Ann. Biomed. Eng. 47(4), 1023–1037 (2019). https://doi.org/10.1007/s10439-019-02211-6

Download references

Funding

This project (INSIST; www.insist-h2020.eu) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond M. Padmos .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Padmos, R.M., Józsa, T.I., El-Bouri, W.K., Závodszky, G., Payne, S.J., Hoekstra, A.G. (2021). Two-Way Coupling Between 1D Blood Flow and 3D Tissue Perfusion Models. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77967-2_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77966-5

  • Online ISBN: 978-3-030-77967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics