Skip to main content

The Role of Smart Sensors in Smart City

  • Chapter
  • First Online:
Smart Sensor Networks

Part of the book series: Studies in Big Data ((SBD,volume 92))

Abstract

Smart cities provide critical infrastructure for a network of sensors, cameras, cables, wireless devices, and data centres that allow city authorities to deliver essential services more quickly and efficiently. Intelligent cities also make the use of sustainable construction materials and reduce energy consumption much more environmentally friendly. Practical usage of technology facilitates the construction of an effective transport management program, upgrades healthcare services, and establishes a broad contact network to interact with all businesses, workers, and other governmental interrelationships. The urbanization pattern is rising. Cities around the world face tight budgets and ageing facilities with further population shifts to metropolitan regions. Future communities need to be healthier, resilient, effective, relaxed, engaging, and intelligent. This chapter highlights the need for smart sensors in smart cities for remote control technologies. The smart temperature sensors are elaborated in detail. The applications of smart temperature sensors in smart cities also discussed with examples such as water management system, energy conservation, street lighting system and waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Habibzadeh, H., Qin, Z., Soyata, T., Kantarci, B.: Large-scale distributed dedicated- and non-dedicated smart city sensing systems. IEEE Sens. J. 17(23), 7649–7658 (2017)

    Article  Google Scholar 

  2. Anjomshoaa, A., Duarte, F., Rennings, D., Matarazzo, T.J., deSouza, P., Ratti, C.: City scanner: building and scheduling a mobile sensing platform for smart city services. IEEE Internet Things J. 5(6), 4567–4579 (2018)

    Article  Google Scholar 

  3. Wong, M.S., Wang, T., Ho, H.C., Kwok, C.Y.T., Lu, K., Abbas, S.: Towards a smart city: development and application of an improved integrated environmental monitoring system. Sustainability 10(3), 623 (2018)

    Google Scholar 

  4. Soyata, T., Habibzadeh, H., Ekenna, C., Nussbaum, B., Lozano, J.: Smart city in crisis: technology and policy concerns. Sustain. Urban Areas 50, 101566 (2019)

    Google Scholar 

  5. Shelton, T., Zook, M., Wiig, A.: The ‘actually existing smart city.’ Camb. J. Reg. Econ. Soc. 8(1), 13–25 (2014)

    Article  Google Scholar 

  6. D’Ignazio, C., Gordon, E., Christoforetti, E.: Sensors and civics: toward a community-centered smart city. In: Paolo, C., Cesare Di, F., Rob, K. (eds) The Right to the Smart City, pp. 113–124. Emerald Publishing Limited (2019)

    Google Scholar 

  7. Ismagilova, E., Hughes, L., Rana, N.P., Dwivedi, Y.K.: Security, privacy and risks within smart cities: literature review and development of a smart city interaction framework. Inf. Syst. Front. (2020)

    Google Scholar 

  8. Papadavid, G., Hadjimitsis, D., Fedra, K., Michaelides, S.: Smart management and irrigation demand monitoring in Cyprus, using remote sensing and water resources simulation and optimization. Adv. Geosci. 30, 31–37 (2011)

    Google Scholar 

  9. Zhang, Y., Gu, Y., Vlatkovic, V., Wang, X.: Progress of smart sensor and smart sensor networks. In: Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No. 04EX788) IEEE. June 2004 vol. 4, pp. 3600–3606 (2004)

    Google Scholar 

  10. Singaravelan, A., Kowsalya, M.: Design and implementation of standby power saving smart socket with wireless sensor network. Procedia Comput. Sci. 92, 305–310 (2016)

    Article  Google Scholar 

  11. Fernandez-Montes, A., Gonzalez-Abril, L., Ortega, J.A., Morente, F.V.: A study on saving energy in artificial lighting by making smart use of wireless sensor networks and actuators. IEEE Netw. 23(6), 16–20 (2009)

    Article  Google Scholar 

  12. 14 E.: Smart Sensors—Overview and Latest Technology (2020). Accessed 15 October 2020.

    Google Scholar 

  13. Gervais-Ducouret, S.: Next smart sensors generation. In: 2011 IEEE Sensors Applications Symposium, 22–24 Feb 2011, pp. 193–196 (2011)

    Google Scholar 

  14. Kunzelman, J., Chung, T., Mather, P.T., Weder, C.: Shape memory polymers with built-in threshold temperature sensors. J. Mater. Chem. 18(10), 1082–1086

    Google Scholar 

  15. Göpel, W., Reinhardt, G., Rösch, M.: Trends in the development of solid state amperometric and potentiometric high temperature sensors. Solid State Ionics 136–137, 519–531 (2000)

    Article  Google Scholar 

  16. Schuh, B.: Smart thermocouple system for industrial temperature measurement. In: SIcon/01. Sensors for Industry Conference. Proceedings of the First ISA/IEEE. Sensors for Industry Conference (Cat. No. 01EX459), 7–7 Nov 2001, pp. 8–11 (2001)

    Google Scholar 

  17. Sarma, U., Boruah, P.K.: Design and development of a high precision thermocouple based smart industrial thermometer with on line linearisation and data logging feature. Measurement 43(10), 1589–1594 (2010)

    Article  Google Scholar 

  18. Gupta, R.K.: IoT based a smart sensor for concrete temperature and humidity measurement. Wutan Huatan Jisuan Jishu 26(10), 42–49 (2019)

    Google Scholar 

  19. Blasdel, N.J., Wujcik, E.K., Carletta, J.E., Lee, K., Monty, C.N.: Fabric nanocomposite resistance temperature detector. IEEE Sens. J. 15(1), 300–306 (2015)

    Article  Google Scholar 

  20. Zhang, B., Kahrizi, M.: High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication. IEEE Sens. J. 7(4), 586–591 (2007)

    Article  Google Scholar 

  21. Wobschall, D., Poh, W.S.: A smart RTD temperature sensor with a prototype IEEE 1451.2 internet interface. In: Proceedings of the ISA/IEEE Sensors for Industry Conference, 27–29 Jan 2004, pp. 183–186 (2004)

    Google Scholar 

  22. Riemer, D.P., Davis, M.W.: Evaluation of a manufacturable in-situ thin film RTD temperature sensor for lithium-ion batteries. ECS Meet. Abs. MA2020–01(2), 434 (2020)

    Google Scholar 

  23. Li, X., Dong, H., Chen, H.: Design of a measurement error calibration device for platinum resistance temperature transmitter. In: 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), 25–27 Aug 2020, pp. 602–606 (2020)

    Google Scholar 

  24. Gums, J.: Types of temperature sensors. Digi-Key Electronics (2018). Accessed 20 June 2020

    Google Scholar 

  25. Wu, J., Yang, X., Ding, H., Wei, Y., Wu, Z., Tao, K., Yang, B.-R., Liu, C., Wang, X., Feng, S., Xie, X.: Ultrahigh sensitivity of flexible thermistors based on 3D porous graphene characterized by imbedded microheaters. Adv. Electron. Mater. 6(8), 2000451 (2020)

    Google Scholar 

  26. Arathy, K., Ansari, S., Malini, K.: High reliability thermistor probes for early detection of breast cancer using skin contact thermometry with thermal imaging. Mater. Express 10(5), 620–628 (2020)

    Article  Google Scholar 

  27. Lundström, H., Mattsson, M.: Radiation influence on indoor air temperature sensors: experimental evaluation of measurement errors and improvement methods. Exp. Thermal Fluid Sci. 115, 110082 (2020)

    Article  Google Scholar 

  28. Voorthuyzen, J.A., Bergveld, P., Sprenkels, A.J.: Semiconductor-based electret sensors for sound and pressure. IEEE Trans. Electr. Insul. 24(2), 267–276 (1989)

    Article  Google Scholar 

  29. Guo, H., Jia, X., Dong, Y., Ye, J., Chen, D., Zhang, R., Zheng, Y.: Applications of AlGaN/GaN high electron mobility transistor-based sensors in water quality monitoring. Semicond. Sci. Technol. 35(12), 123001 (2020)

    Article  Google Scholar 

  30. Peterson, P.J.: Theory and practice of the use of metal oxide semiconductor pollution sensors. University of Leicester (2020)

    Google Scholar 

  31. Ji, S., Jang, J., Hwang, J.C., Lee, Y., Lee, J.-H., Park, J.-U.: Amorphous oxide semiconductor transistors with air dielectrics for transparent and wearable pressure sensor arrays. Adv. Mater. Technol. 5(2), 1900928 (2020)

    Google Scholar 

  32. Pitigoi-Aron, R., Forke, U., Viala, R.: Diode-based light sensors and methods. Google Patents (2007)

    Google Scholar 

  33. Elwi, T.A.: Remotely controlled reconfigurable antenna for modern 5G networks applications. Microw. Opt. Technol. Lett. (2020)

    Google Scholar 

  34. Rocha, Á.B., Fernandes, E.M., Dos Santos, C.A., Diniz, J.M., Junior, W.F.: Development and validation of an autonomous system for measurement of sunshine duration. Sensors 20(16), 4606 (2020)

    Article  Google Scholar 

  35. Conrad, K.S., Manahan, C.C., Crane, B.R.: Photochemistry of flavoprotein light sensors. Nat. Chem. Biol. 10(10), 801–809 (2014)

    Article  Google Scholar 

  36. Fang, X., Xu, Y., Yang, J., Wu, K.: Analyses of pinned photodiodes with high resistivity epitaxial layer for indirect time-of-flight applications. IEEE Access 8, 187575–187583 (2020)

    Article  Google Scholar 

  37. Bakar, A.H.A., Glass, T., Tee, H.Y., Alam, F., Legg, M.: Accurate visible light positioning using multiple photodiode receiver and machine learning. IEEE Trans. Instrum. Meas. 70, 1–12 (2020)

    Google Scholar 

  38. Strobel, N., Droseros, N., Köntges, W., Seiberlich, M., Pietsch, M., Schlisske, S., Lindheimer, F., Schröder, R.R., Lemmer, U., Pfannmöller, M., Banerji, N., Hernandez-Sosa, G.: Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv. Mater. 32(12), 1908258 (2020)

    Article  Google Scholar 

  39. Li, G., Ma, Z., You, C., Huang, G., Song, E., Pan, R., Zhu, H., Xin, J., Xu, B., Lee, T., An, Z., Di, Z., Mei, Y.: Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 6(18), eaaz6511 (2020)

    Google Scholar 

  40. Singh, A.K., Chourasia, N.K., Pal, B.N., Pandey, A., Chakrabarti, P.: Low operating voltage solution processed (Li2ZnO2) dielectric and (SnO2) channel-based medium wave UV-B phototransistor for application in phototherapy. IEEE Trans. Electron. Dev. 67(5), 2028–2034 (2020)

    Google Scholar 

  41. Haider, G., Wang, Y.-H., Sonia, F.J., Chiang, C.-W., Frank, O., Vejpravova, J., Kalbáč, M., Chen, Y.-F.: Rippled metallic-nanowire/graphene/semiconductor nanostack for a gate-tunable ultrahigh-performance stretchable phototransistor. Adv. Optical Mater. 8(19), 2000859 (2020)

    Google Scholar 

  42. Jo, J., Jo, B., Kim, J., Kim, S., Han, W.: Development of an IoT-based indoor air quality monitoring platform. J. Sens. 2020, 8749764 (2020)

    Article  Google Scholar 

  43. Tunyagi, A., Dicu, T., Cucos, A., Burghele, B., Dobrei, G., Lupulescu, A., Moldovan, M., Nită, D., Papp, B., Pap, I.: An innovative system for monitoring radon and indoor air quality. Rom. J. Phys. 65, 803 (2020)

    Google Scholar 

  44. Herrmann, A., Fix, R.: Air quality measurement based on advanced PM2. 5 and VOC sensor technologies. Sensors Transducers 243(4), 1–5 (2020)

    Google Scholar 

  45. Adewusi, M., Samuel, T., Ayoade, E., Adewale, M.: Passive infrared motion detection with bluetooth interface. Engineers Forum.com.ng (2020)

    Google Scholar 

  46. Andrews, J., Kowsika, M., Vakil, A., Li, J.: A motion induced passive infrared (PIR) sensor for stationary human occupancy detection. In: 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 1295–1304. IEEE (2020)

    Google Scholar 

  47. Rahmatulloh, A., Nursuwars, F.M.S., Darmawan, I., Febrizki, G.: Applied Internet of Things (IoT): the prototype bus passenger monitoring system using PIR sensor. In: 2020 8th International Conference on Information and Communication Technology (ICoICT), 24–26 June 2020, pp. 1–6 (2020)

    Google Scholar 

  48. Zhu, T., Weng, Z., Chen, G., Fu, L.: A hybrid deep learning system for real-world mobile user authentication using motion sensors. Sensors 20(14), 3876 (2020)

    Article  Google Scholar 

  49. Paredes, F., Herrojo, C., Martín, F.: Microwave encoders with synchronous reading and direction detection for motion control applications. In: 2020 IEEE/MTT-S International Microwave Symposium (IMS), 4–6 Aug 2020, pp. 472–475 (2020)

    Google Scholar 

  50. Liu, P., Chen, W.: Microwave-assisted selective heating to rapidly construct a nano-cracked hollow sponge for stretch sensing. J. Mater. Chem. C 8(27), 9391–9400 (2020)

    Article  Google Scholar 

  51. Herren, B., Saha, M.C., Liu, Y.: Carbon nanotube-based piezoresistive sensors fabricated by microwave irradiation. Adv. Eng. Mater. 22(2), 1901068 (2020)

    Article  Google Scholar 

  52. Faglia, G., Comini, E., Pardo, M., Taroni, A., Cardinali, G., Nicoletti, S., Sberveglieri, G.: Micromachined gas sensors for environmental pollutants. Microsyst. Technol. 6(2), 54–59 (1999)

    Article  Google Scholar 

  53. Kodali, R.K., Pathuri, S., Rajnarayanan, S.C.: Informatics (2020) Smart indoor air pollution monitoring station. In: International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5

    Google Scholar 

  54. Giraldo, J.P., Wu, H., Newkirk, G.M., Kruss, S.: Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14(6), 541–553 (2019)

    Google Scholar 

  55. Zhao, F., He, J., Li, X., Bai, Y., Ying, Y., Ping, J.: Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens. Bioelectron. 170, 112636 (2020)

    Article  Google Scholar 

  56. Rus, A.C., Khan, M.R.B., Ali, A.M.M., Billah, M.M.: Optimal plant management system via automated watering and fertilization. AIP Conf. Proc. 2233(1), 050013 (2020)

    Google Scholar 

  57. Antonacci, A., Arduini, F., Moscone, D., Palleschi, G., Scognamiglio, V.: Nanostructured (Bio)sensors for smart agriculture. TrAC, Trends Anal. Chem. 98, 95–103 (2018)

    Article  Google Scholar 

  58. Fangmeier, D., Garrot, D., Mancino, C., Husman, S.H.J.A.P.: Automated irrigation systems using plant and soil sensors. ASAE Publication 4–90, 533–537 (1990)

    Google Scholar 

  59. Domoney, W.F., Ramli, N., Alarefi, S., Walker, S.D.: Smart city solutions to water management using self-powered, low-cost, water sensors and apache spark data aggregation. In: 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), 10–13 Dec 2015, pp. 1–4 (2015)

    Google Scholar 

  60. Park, J., Kim, K.T., Lee, W.H.J.W.: Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water 12(2), 510 (2020)

    Article  Google Scholar 

  61. Mohammed Shahanas, K., Bagavathi Sivakumar, P.: Framework for a smart water management system in the context of smart city initiatives in india. Procedia Comput. Sci. 92, 142–147 (2016)

    Article  Google Scholar 

  62. Wang, X., Ma, J.-J., Wang, S., Bi, D.-W.J.S.: Prediction-based dynamic energy management in wireless sensor networks. Sensors 7(3), 251–266 (2007)

    Article  Google Scholar 

  63. Siva Ranjani, S., Radha Krishnan, S., Thangaraj, C., Vimala Devi, K.: Achieving energy conservation by cluster based data aggregation in wireless sensor networks. Wireless Pers. Commun. 73(3), 731–751 (2013)

    Article  Google Scholar 

  64. Jazizadeh, F., Kavulya, G., Kwak, J.-Y., Becerik-Gerber, B., Tambe, M., Wood, W.: Human-building interaction for energy conservation in office buildings. In: Construction Research Congress 2012, pp. 1830–1839 (2012)

    Google Scholar 

  65. Liu, R.P., Rogers, G., Zhou, S.: WSN14–3: Honeycomb architecture for energy conservation in wireless sensor networks. In: IEEE Globecom 2006, 27 Nov–1 Dec 2006, pp. 1–5 (2006)

    Google Scholar 

  66. Guiling, W., Irwin, M.J., Berman, P., Haoying, F., Porta, T.L.: Optimizing sensor movement planning for energy efficiency. In: Proceedings of the 2005 International Symposium on Low Power Electronics and Design ISLPED ‘05, 8–10 Aug 2005, pp. 215–220 (2005)

    Google Scholar 

  67. Nanavati, K., Prajapati, H.K., Pandav, H., Umaria, K., Desai, N.K.: Smart autonomous street light control system (2016)

    Google Scholar 

  68. Longhi, S., Marzioni, D., Alidori, E., Buo, G.D., Prist, M., Grisostomi, M., Pirro, M.: Solid waste management architecture using wireless sensor network technology. In: 2012 5th International Conference on New Technologies, Mobility and Security (NTMS), 7–10 May 2012, pp. 1–5 (2012)

    Google Scholar 

  69. Wijaya, A.S., Zainuddin, Z., Niswar, M.: Design a smart waste bin for smart waste management. In: 2017 5th International Conference on Instrumentation, Control, and Automation (ICA), 9–11 Aug 2017, pp. 62–66 (2017)

    Google Scholar 

  70. Folianto, F., Low, Y.S., Yeow, W.L.: Smartbin: smart waste management system. In: 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 7–9 April 2015, pp. 1–2 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Channi, H.K., Kumar, R. (2022). The Role of Smart Sensors in Smart City. In: Singh, U., Abraham, A., Kaklauskas, A., Hong, TP. (eds) Smart Sensor Networks. Studies in Big Data, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-77214-7_2

Download citation

Publish with us

Policies and ethics