Skip to main content

On-Farm Point-of-Care Diagnostic Technologies for Monitoring Health, Welfare, and Performance in Livestock Production Systems

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 54

Abstract

The occurrence of infectious diseases has a significant adverse effect on livestock health and production efficiency. Current diagnostic approaches in veterinary practice are primarily focused on the observation of changes in physical, clinical, behavioral, or performance of individual or groups of animals. In recent years, these diagnostic approaches have markedly improved livestock profitability during their production cycle. This is mainly achieved by using reliable and conveniently available on-farm and point-of-care diagnostic technologies for the rapid and accurate management of animal health. The availability of on-farm and point-of-care technology is rapidly changing decisions for bovine practitioners on both individual sick cows and herd health level. Early detection of infectious diseases using quick, effective, low-cost, automated technologies will allow timely detection of infected animals, thus reducing the economic loss and associated abuse of antimicrobial therapy. Here we review the currently available on-farm and point-of-care diagnostic technologies for health surveillance and disease detection in livestock production systems. We additionally review the advantages and disadvantages of each methodology, concerning their possible effect on the improvement of animal welfare and productivity of farm animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuelo Á, Alves-Nores V (2016) Point-of-care testing in cattle practice: reliability of cow-side diagnostic tests. In Pract 38:293–302

    Article  Google Scholar 

  • Alsaaod M, Büscher W (2012) Detection of hoof lesions using digital infrared thermography in dairy cows. J Dairy Sci 95:735–742

    Article  CAS  PubMed  Google Scholar 

  • Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J (2016) High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol 56:394–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson PA, Berzins IK, Fogarty F, Hamlin HJ, Guillette LJ Jr (2011) Sound, stress, and seahorses: the consequences of a noisy environment to animal health. Aquaculture 311:129–138

    Article  Google Scholar 

  • Bach A, Dinarés M, Devant M, Carré X (2007) Associations between lameness and production, feeding and milking attendance of Holstein cows milked with an automatic milking system. J Dairy Res 74:40–46

    Article  CAS  PubMed  Google Scholar 

  • Berckmans D (2014a) Precision livestock farming technologies for welfare management in intensive livestock systems. Rev Sci Tech 33:189–196

    Article  CAS  PubMed  Google Scholar 

  • Berckmans D (2014b) Precision livestock farming technologies for welfare management in intensive livestock systems. Rev Sci Tech Off Int Epiz 33:189–196

    Article  CAS  Google Scholar 

  • Bisson I-A, Ssebide BJ, Marra PP (2015) Early detection of emerging zoonotic diseases with animal morbidity and mortality monitoring. EcoHealth 12:98–103

    Article  PubMed  Google Scholar 

  • Bolboacă SD (2019) Medical diagnostic tests: a review of test anatomy, phases, and statistical treatment of data. Comput Math Methods Med 2019

    Google Scholar 

  • Borderas T, Fournier A, Rushen J, De Passille A (2008) Effect of lameness on dairy cows’ visits to automatic milking systems. Can J Anim Sci 88:1–8

    Article  Google Scholar 

  • Brehme U, Stollberg U, Holz R, Schleusener T (2008) ALT pedometer – new sensor-aided measurement system for improvement in oestrus detection. Comput Electron Agric 62:73–80

    Article  Google Scholar 

  • Brown-Brandl T, Eigenberg R (2011) Development of a livestock feeding behavior monitoring system. Trans ASABE 54:1913–1920

    Article  Google Scholar 

  • Busin V, Wells B, Kersaudy-Kerhoas M, Shu W, Burgess ST (2016) Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics. Mol Cell Probes 30:331–341

    Article  CAS  PubMed  Google Scholar 

  • Carpentier L, Berckmans D, Youssef A, Berckmans D, Van Waterschoot T, Johnston D, Ferguson N, Earley B, Fontana I, Tullo E, Guarino M, Vranken E, Norton T (2018) Automatic cough detection for bovine respiratory disease in a calf house. Biosyst Eng 173:45–56

    Article  Google Scholar 

  • Ceballos A, Sanderson D, Rushen J, Weary D (2004) Improving stall design: use of 3-D kinematics to measure space use by dairy cows when lying down. J Dairy Sci 87:2042–2050

    Article  CAS  PubMed  Google Scholar 

  • Chapinal N, DE Passille AM, Pastell M, Hänninen L, Munksgaard L, Rushen J (2011) Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. J Dairy Sci 94:2895–2901

    Article  CAS  PubMed  Google Scholar 

  • Chappell JG, Byaruhanga T, Tsoleridis T, Ball JK, Mcclure CP (2019) Identification of infectious agents in high-throughput sequencing data sets is easily achievable using free, cloud-based bioinformatics platforms. J Clin Microbiol:57

    Google Scholar 

  • Cheon D-S, Chae C (2000) Comparison of virus isolation, reverse transcription-polymerase chain reaction, immunohistochemistry, and in situ hybridization for the detection of porcine reproductive and respiratory syndrome virus from naturally aborted fetuses and stillborn piglets. J Vet Diagn Investig 12:582–587

    Article  CAS  Google Scholar 

  • Chung Y, Oh S, Lee J, Park D, Chang H-H, Kim S (2013) Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems. Sensors 13:12929–12942

    Article  PubMed  PubMed Central  Google Scholar 

  • Coghe J, Uystepruyst CH, Bureau F, Detilleux J, Art T, Lekeux P (2000) Validation and prognostic value of plasma lactate measurement in bovine respiratory disease. Vet J 160:139–146

    Article  CAS  PubMed  Google Scholar 

  • Commission E (2011) Communication from the Commission to the European Parliament and the Council. Action plan against the rising threats from antimicrobial resistance

    Google Scholar 

  • Craft ME (2015) Infectious disease transmission and contact networks in wildlife and livestock. Philos Trans R Soc B 370:20140107

    Article  Google Scholar 

  • D’souza MKA (2020) Point of care animal side simple phosphorous detection test kit in cattle. Institute of Chemical Technology (ICT), Department of Pharmaceutical Sciences & Technology, Deemed University, Elite status, Centre of excellence (GOM), Matunga (E), Mumbai, India-400019

    Google Scholar 

  • Dai Y, Liu CC (2019) Recent advances on electrochemical biosensing strategies toward universal point-of-care systems. Angew Chem 131:12483–12496

    Article  Google Scholar 

  • Das J, Cross G, Qu C, Makineni A, Tokekar P, Mulgaonkar Y, Kumar V (2015) Devices, systems, and methods for automated monitoring enabling precision agriculture. In: 2015 IEEE international conference on automation science and engineering (CASE). IEEE, pp 462–469

    Chapter  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • Davis J, Vanzant E, Purswell J, Green A, Bicudo J, Gates R, Holloway L, Smith W (2003) Methods of remote, continuous temperature detection in beef cattle. ASAE annual meeting, 2003, vol 1. American Society of Agricultural and Biological Engineers

    Google Scholar 

  • Davis JD, Darr MJ, Xin H, Harmon JD, Russell JR (2011) Development of a GPS herd activity and well-being kit (GPS HAWK) to monitor cattle behavior and the effect of sample interval on travel distance. Appl Eng Agric 27:143–150

    Article  Google Scholar 

  • den Uijl I, Gómez Álvarez CB, Bartram D, Dror Y, Holland R, Cook A (2017) External validation of a collar-mounted triaxial accelerometer for second-by-second monitoring of eight behavioural states in dogs. PloS One 12(11):e0188481

    Google Scholar 

  • Edwards T (2010) Control methods for bovine respiratory disease for feedlot cattle. Vet Clin Food Anim Pract 26:273–284

    Article  CAS  Google Scholar 

  • Elelu N, Ferrolho J, Couto J, Domingos A, Eisler MC (2016) Molecular diagnosis of the tick-borne pathogen Anaplasma marginale in cattle blood samples from Nigeria using qPCR. Exp Appl Acarol 70:501–510

    Article  CAS  PubMed  Google Scholar 

  • Elolimy A, Alharthi A, Zeineldin M, Parys C, Loor JJ (2020) Residual feed intake divergence during the preweaning period is associated with unique hindgut microbiome and metabolome profiles in neonatal Holstein heifer calves. J Anim Sci Biotechnol 11:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enstipp MR, Ciccione S, Gineste B, Milbergue M, Ballorain K, Ropert-Coudert Y, Kato A, Plot V, Georges J-Y (2011) Energy expenditure of freely swimming adult green turtles (Chelonia mydas) and its link with body acceleration. J Exp Biol 214:4010–4020

    Article  PubMed  Google Scholar 

  • Exadaktylos V, Silva M, Aerts J-M, Taylor CJ, Berckmans D (2008) Real-time recognition of sick pig cough sounds. Comput Electron Agric 63:207–214

    Article  Google Scholar 

  • Felton C, Colazo M, Bench C, Ambrose D (2013) Large variations exist in prepartum activity among dairy cows continuously housed in a tie-stall barn. Can J Anim Sci 93:435–444

    Article  Google Scholar 

  • Ferrari S, Silva M, Guarino M, Aerts JM, Berckmans D (2008) Cough sound analysis to identify respiratory infection in pigs. Comput Electron Agric 64:318–325

    Article  Google Scholar 

  • Ferrari S, Piccinini R, Silva M, Exadaktylos V, Berckmans D, Guarino M (2010) Cough sound description in relation to respiratory diseases in dairy calves. Prev Vet Med 96:276–280

    Article  CAS  PubMed  Google Scholar 

  • Firk R, Stamer E, Junge W, Krieter J (2002) Automation of oestrus detection in dairy cows: a review. Livest Prod Sci 75:219–232

    Article  Google Scholar 

  • Fleishman LJ, Mcclintock WJ, D’eath RB, Brainard DH, Endler JA (1998) Colour perception and the use of video playback experiments in animal behaviour. Anim Behav 56:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Foley CJ, Sillero-Zubiri C (2020) Open-source, low-cost modular GPS collars for monitoring and tracking wildlife. Methods Ecol Evol 11:553–558

    Article  Google Scholar 

  • Frost A, Parsons D, Stacey K, Robertson A, Welch S, Filmer D, Fothergill A (2003) Progress towards the development of an integrated management system for broiler chicken production. Comput Electron Agric 39:227–240

    Article  Google Scholar 

  • Galan E, Llonch P, Villagra A, Levit H, Pinto S, Del Prado A (2018) A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle. PLoS One 13:e0206520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gasim GI, Musa IR, Abdien MT, Adam I (2013) Accuracy of tympanic temperature measurement using an infrared tympanic membrane thermometer. BMC Res Notes 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Gattani A, Singh SV, Agrawal A, Khan MH, Singh P (2019) Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal Biochem 579:25–34

    Article  CAS  PubMed  Google Scholar 

  • Ghirardi J, Caja G, Garín D, Casellas J, Hernández-Jover M (2006) Evaluation of the retention of electronic identification boluses in the forestomachs of cattle. J Anim Sci 84:2260–2268

    Article  CAS  PubMed  Google Scholar 

  • Glaser L, Carstensen M, Shaw S, Robbe-Austerman S, Wunschmann A, Grear D, Stuber T, Thomsen B (2016) Descriptive epidemiology and whole genome sequencing analysis for an outbreak of bovine tuberculosis in beef cattle and white-tailed deer in northwestern Minnesota. PLoS One 11:e0145735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godsk T, Kjærgaard MB (2011) High classification rates for continuous cow activity recognition using low-cost GPS positioning sensors and standard machine learning techniques. In: Industrial conference on data mining. Springer, pp 174–188

    Google Scholar 

  • Godyń D, Herbut P, Angrecka S (2019) Measurements of peripheral and deep body temperature in cattle – a review. J Therm Biol 79:42–49

    Article  PubMed  Google Scholar 

  • González L, Schwartzkopf-Genswein K, Caulkett N, Janzen E, Mcallister T, Fierheller E, Schaefer A, Haley D, Stookey J, Hendrick S (2010) Pain mitigation after band castration of beef calves and its effects on performance, behavior, Escherichia coli, and salivary cortisol. J Anim Sci 88:802–810

    Article  PubMed  CAS  Google Scholar 

  • Goodwin SD (1998) Comparison of body temperatures of goats, horses, and sheep measured with a tympanic infrared thermometer, an implantable microchip transponder, and a rectal thermometer. J Am Assoc Lab Anim Sci 37:51–55

    Google Scholar 

  • Griffin TW (2009) Whole-farm benefits of GPS-enabled navigation technologies. Reno, Nevada, June 21-June 24, 2009. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

  • Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84:487–515

    Article  CAS  PubMed  Google Scholar 

  • Handcock RN, Swain DL, Bishop-Hurley GJ, Patison KP, Wark T, Valencia P, Corke P, O’Neill CJ (2009) Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9:3586–3603

    Article  PubMed  PubMed Central  Google Scholar 

  • Helwatkar A, Riordan D, Walsh J (2014) Sensor technology for animal health monitoring. In: 8th international conference on sensing technology, Liverpool, pp 266–271

    Google Scholar 

  • Hennessy DA, Wolf CA (2018) Asymmetric information, externalities and incentives in animal disease prevention and control. J Agric Econ 69:226–242

    Article  Google Scholar 

  • Hovinen M, Siivonen J, Taponen S, Hänninen L, Pastell M, Aisla A-M, Pyörälä S (2008) Detection of clinical mastitis with the help of a thermal camera. J Dairy Sci 91:4592–4598

    Article  CAS  PubMed  Google Scholar 

  • Ipema A, Goense D, Hogewerf P, Houwers H, Van Roest H (2008) Pilot study to monitor body temperature of dairy cows with a rumen bolus. Comput Electron Agric 64:49–52

    Article  Google Scholar 

  • Iraguha B, Hamudikuwanda H, Mushonga B, Kandiwa E, Mpatswenumugabo JP (2017) Comparison of cow-side diagnostic tests for subclinical mastitis of dairy cows in Musanze district, Rwanda. J S Afr Vet Assoc 88:e1–e6

    Article  PubMed  Google Scholar 

  • Ishiwata T, Kilgour R, Uetake K, Eguchi Y, Tanaka T (2007) Choice of attractive conditions by beef cattle in a Y-maze just after release from restraint. J Anim Sci 85:1080–1085

    Article  CAS  PubMed  Google Scholar 

  • Iwersen M, Falkenberg U, Voigtsberger R, Forderung D, Heuwieser W (2009) Evaluation of an electronic cowside test to detect subclinical ketosis in dairy cows. J Dairy Sci 92:2618–2624

    Article  CAS  PubMed  Google Scholar 

  • Johnson SR, Rao S, Hussey SB, Morley PS, Traub-Dargatz JL (2011) Thermographic eye temperature as an index to body temperature in ponies. J Equine Vet 31:63–66

    Article  Google Scholar 

  • Jones G, Bork O, Ferguson SA, Bates A (2019) Comparison of an on-farm point-of-care diagnostic with conventional culture in analysing bovine mastitis samples. J Dairy Res 86:222–225

    Article  CAS  PubMed  Google Scholar 

  • Jorquera-Chavez M, Fuentes S, Dunshea FR, Warner RD, Poblete T, Jongman EC (2019) Modelling and validation of computer vision techniques to assess heart rate, eye temperature, ear-base temperature and respiration rate in cattle. Animals 9(12):1089

    Google Scholar 

  • Karapinar T, Hayirli OKA, Kom M (2013) Evaluation of 4 point-of-care units for the determination of blood L-lactate concentration in cattle. J Vet Intern Med 27:1596–1603

    Article  CAS  PubMed  Google Scholar 

  • Katsoulos PD, Minas A, Karatzia MA, Pourliotis K, Christodoulopoulos G (2011) Evaluation of a portable glucose meter for use in cattle and sheep. Vet Clin Pathol 40:245–247

    Article  PubMed  Google Scholar 

  • Krieger S, Oczak M, Lidauer L, Berger A, Kickinger F, Öhlschuster M, Auer W, Drillich M, Iwersen M (2019) An ear-attached accelerometer as an on-farm device to predict the onset of calving in dairy cows. Biosyst Eng 184:190–199

    Article  Google Scholar 

  • Kumar KR, Cowley MJ, Davis RL (2019) Next-generation sequencing and emerging technologies. Seminars in thrombosis and hemostasis. Thieme Medical Publishers, pp 661–673

    Google Scholar 

  • Kumar P, Chakraborty S, Nagar D, Birader K, Suman P (2020) Application of biosensors to enhance reproductive efficiency and production of livestock and poultry by diverse antigen analysis. Immunodiagnostic technologies from laboratory to point-of-care testing. Springer

    Google Scholar 

  • Lahdenoja O, Hurnanen T, Kaisti M, Koskinen J, Tuominen J, Vähä-Heikkilä M, Parikka L, Wiberg M, Koivisto T, Pänkäälä M (2019) Cardiac monitoring of dogs via smartphone mechanocardiography: a feasibility study. Biomed Eng Online 18(1):1–14

    Google Scholar 

  • Liang D, Wood C, Mcquerry K, Ray D, Clark J, Bewley J (2013) Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. J Dairy Sci 96:5072–5081

    Article  CAS  PubMed  Google Scholar 

  • Lokhorst C, Ipema A (2010) Precision livestock farming for operational management support in livestock production chains. In: Trienekens J, Top J, van der Vorst J, Beulens A (eds) Towards effective food chains: models and applications. Wageningen Academic Publishers, pp 293–308

    Google Scholar 

  • Løvendahl P, Chagunda M (2010) On the use of physical activity monitoring for estrus detection in dairy cows. J Dairy Sci 93:249–259

    Article  PubMed  CAS  Google Scholar 

  • Macmillan K, Lopez Helguera I, Behrouzi A, Gobikrushanth M, Hoff B, Colazo MG (2017) Accuracy of a cow-side test for the diagnosis of hyperketonemia and hypoglycemia in lactating dairy cows. Res Vet Sci 115:327–331

    Article  CAS  PubMed  Google Scholar 

  • Mader T, Holt S, Hahn G, Davis M, Spiers D (2002) Feeding strategies for managing heat load in feedlot cattle. J Anim Sci 80:2373–2382

    CAS  PubMed  Google Scholar 

  • Mahen PJ, Williams HJ, Smith RF, Grove-White D (2018) Effect of blood ionised calcium concentration at calving on fertility outcomes in dairy cattle. Vet Rec 183:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Makinde A (2020) Investigating perceptions, motivations, and challenges in the adoption of precision livestock farming in the beef industry. Masther thesis presented to The University of Guelph

    Google Scholar 

  • Manteuffel G, Puppe B, Schön PC (2004) Vocalization of farm animals as a measure of welfare. Appl Anim Behav Sci 88:163–182

    Article  Google Scholar 

  • Martiskainen P, Järvinen M, Skön J-P, Tiirikainen J, Kolehmainen M, Mononen J (2009) Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl Anim Behav Sci 119:32–38

    Article  Google Scholar 

  • Megahed AA, Constable PD (2020) Technical note: evaluation of a colorimetric point-of-care test for measuring urine ammonium concentration in periparturient dairy cattle. J Dairy Sci 103:8655–8660

    Article  CAS  PubMed  Google Scholar 

  • Megahed AA, Hiew MW, Townsend JR, Messick JB, Constable PD (2015) Evaluation of an electrochemical point-of-care meter for measuring glucose concentration in blood from periparturient dairy cattle. J Vet Intern Med 29:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megahed AA, Hiew MWH, Grunberg W, Constable PD (2016) Evaluation of 2 portable ion-selective electrode meters for determining whole blood, plasma, urine, milk, and abomasal fluid potassium concentrations in dairy cattle. J Dairy Sci 99:7330–7343

    Article  CAS  PubMed  Google Scholar 

  • Megahed AA, Hiew MWH, Townsend JR, Constable PD (2017) Characterization of the analytic performance of an electrochemical point-of-care meter for measuring beta-hydroxybutyrate concentration in blood and plasma from periparturient dairy cattle. Vet Clin Pathol 46:314–325

    Article  PubMed  Google Scholar 

  • Moen R, Pastor J, Cohen Y (2001) Effects of animal activity on GPS telemetry location attempts. Alces 37:207–216

    Google Scholar 

  • Mohr S, Beard R, Nisbet AJ, Burgess ST, Reeve R, Denwood M, Porphyre T, Zadoks RN, Matthews L (2020) Uptake of diagnostic tests by livestock farmers: a stochastic game theory approach. Front Vet Sci 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Montanholi Y, Swanson K, Palme R, Schenkel F, Mcbride B, Lu D, Miller S (2010) Assessing feed efficiency in beef steers through feeding behavior, infrared thermography and glucocorticoids. Animal 4:692–701

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Siebert S, Buerkert A, Schlecht E (2009) Use of a tri-axial accelerometer for automated recording and classification of goats’ grazing behaviour. Appl Anim Behav Sci 119:158–170

    Article  Google Scholar 

  • Naqvi AN (2007) Application of molecular genetic technologies in livestock production: potentials for developing countries. Adv Biol Res 34:72–84

    Google Scholar 

  • Neethirajan S (2020). Transforming the adaptation physiology of farm animals through sensors. Animals 10(9):1512

    Google Scholar 

  • Neethirajan S, Tuteja SK, Huang S-T, Kelton D (2017) Recent advancement in biosensors technology for animal and livestock health management. Biosens Bioelectron 98:398–407

    Article  CAS  PubMed  Google Scholar 

  • Nejad JG, Sung K-I (2017) Behavioral and physiological changes during heat stress in Corriedale ewes exposed to water deprivation. J Animal Sci Technol 59(1):1–6

    Google Scholar 

  • Nilsson M, Herlin A, Ardö H, Guzhva O, Åström K, Bergsten C (2015) Development of automatic surveillance of animal behaviour and welfare using image analysis and machine learned segmentation technique. Animal 9:1859–1865

    Article  CAS  PubMed  Google Scholar 

  • Norling B (1991) Accelerometers: current and emerging technology. Kinematic systems in geodesy, surveying, and remote sensing. Springer

    Google Scholar 

  • O’Leary N, Byrne D, O’Connor A, Shalloo L (2020) Invited review: cattle lameness detection with accelerometers. J Dairy Sci

    Google Scholar 

  • Pastell ME, Kujala M (2007) A probabilistic neural network model for lameness detection. J Dairy Sci 90(5):2283–2292

    Article  CAS  PubMed  Google Scholar 

  • Pastell M, Takko H, Gröhn H, Hautala M, Poikalainen V, Praks J, Veermäe I, Kujala M, Ahokas J (2006) Assessing cows’ welfare: weighing the cow in a milking robot. Biosyst Eng 93:81–87

    Article  Google Scholar 

  • Pereira AMF, Alves A, Infante P, Titto EA, Baccari F, Afonso Almeida JA (2010) A device to improve the schleger and turner method for sweating rate measurements. Int J Biomet 54(1):37–43

    Google Scholar 

  • Proudfoot K, Weary D, Von Keyserlingk M (2010) Behavior during transition differs for cows diagnosed with claw horn lesions in mid lactation. J Dairy Sci 93:3970–3978

    Article  CAS  PubMed  Google Scholar 

  • Quandt JE, Barletta M, Cornell KK, Giguere S, Hofmeister EH (2018) Evaluation of a point-of-care blood glucose monitor in healthy goats. J Vet Emerg Crit Care (San Antonio) 28:45–53

    Article  Google Scholar 

  • Reddy PR, Rajeev Kumar B, Srinivasa Prasad Ch, Venkataseshiah Ch, Hyder I (2019) Erythrocyte fragility based assessment of true thermal resilience in tropical small ruminants. Biol Rhythm Res 1–12

    Google Scholar 

  • Reuter R, Carroll J, Dailey J, Chase C Jr, Coleman S, Riley D, Spiers D, Weaber R, Galyean M (2007) Development of an automatic, indwelling rectal temperature probe for cattle research. J Anim Sci 85:12

    Google Scholar 

  • Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revathi Poonati PCM, Punati RD, Maity SN, Alapati KS, Polavarapu KKB, Polavarapu R (2020) Development of rapid, sensitive and in-expensive point of care diagnostic method for brucellosis in dairy cattle at resource-limited areas. Indian J Publ Health Res Dev:11

    Google Scholar 

  • Ringgenberg N, Bergeron R, Devillers N (2010) Validation of accelerometers to automatically record sow postures and stepping behaviour. Appl Anim Behav Sci 128:37–44

    Article  Google Scholar 

  • Robinson C, Creedon N, Sayers R, Kennedy E, O’Riordan A (2020) Electrochemical detection of bovine immunoglobulins G to determine passive transfer of antibodies to calves. Anal Methods

    Google Scholar 

  • Rose-Dye T, Burciaga-Robles L, Krehbiel C, Step D, Fulton R, Confer A, Richards C (2011) Rumen temperature change monitored with remote rumen temperature boluses after challenges with bovine viral diarrhea virus and Mannheimia haemolytica. J Anim Sci 89:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Rothwell ES, Bercovitch FB, Andrews JR, Anderson MJ (2011) Estimating daily walking distance of captive African elephants using an accelerometer. Zoo Biol 30:579–591

    Article  PubMed  Google Scholar 

  • Rushen J, Chapinal N, De Passille A (2012) Automated monitoring of behavioural-based animal welfare indicators. Anim Welfare UFAW J 21:339

    Article  CAS  Google Scholar 

  • Saegerman C, Porter S, Humblet M (2011) The use of modelling to evaluate and adapt strategies for animal disease control. Revue Scientifique et Technique-OIE 30:555

    Article  CAS  Google Scholar 

  • Sala JE, Quintana F, Wilson RP, Dignani J, Lewis MN, Campagna C (2011) Pitching a new angle on elephant seal dive patterns. Polar Biol 34:1197–1209

    Article  Google Scholar 

  • Sargeant JM, O’Connor AM (2020) Scoping reviews, systematic reviews, and meta-analysis: applications in veterinary medicine. Front Vet Sci 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer AL, Cook NJ, Church JS, Basarab J, Perry B, Miller C, Tong AK (2007) The use of infrared thermography as an early indicator of bovine respiratory disease complex in calves. Res Vet Sci 83:376–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabe C (1982) The current epidemiological revolution in veterinary medicine. Part I. Prev Vet Med 1:5–15

    Article  Google Scholar 

  • Shao B, Xin H (2008) A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Comput Electron Agric 62:15–21

    Article  Google Scholar 

  • Shepley E, Berthelot M, Vasseur E (2017) Validation of the ability of a 3D pedometer to accurately determine the number of steps taken by dairy cows when housed in tie-stalls. Agriculture 7:53

    Article  Google Scholar 

  • Shirley MW, Charleston B, King DP (2010) New opportunities to control livestock diseases in the post-genomics era. J Agric Sci 149:115–121

    Article  Google Scholar 

  • Singh B, Mal G, Gautam SK, Mukesh M (2019) Next-generation sequencing vis-à-vis veterinary health management. Advances in animal biotechnology. Springer

    Google Scholar 

  • Sowell B, Branine M, Bowman J, Hubbert M, Sherwood H, Quimby W (1999) Feeding and watering behavior of healthy and morbid steers in a commercial feedlot. J Anim Sci 77:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Stewart M, Webster J, Schaefer A, Cook N, Scott S (2005) Infrared thermography as a non-invasive tool to study animal welfare. Anim Welf 14:319–325

    Article  CAS  Google Scholar 

  • Stewart M, Stafford K, Dowling S, Schaefer A, Webster J (2008) Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol Behav 93:789–797

    Article  CAS  PubMed  Google Scholar 

  • Stokes J, Leach K, Main D, Whay H (2012) An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. Vet J 193:674–678

    Article  CAS  PubMed  Google Scholar 

  • Stone AE, Tsai I-C, Bewley JM (2017) Precision dairy monitoring of fresh cows. In: Proceedings from the Western Dairy Management conference, pp 120–133

    Google Scholar 

  • Sun AC, Hall DA (2019) Point-of-care smartphone-based electrochemical biosensing. Electroanalysis 31:2–16

    Article  CAS  Google Scholar 

  • Tang L, Abplanalp P (2014) GPS guided farm mapping and waypoint tracking mobile robotic system. In: 9th IEEE conference on industrial electronics and applications. IEEE, pp 1676–1681

    Google Scholar 

  • Theurer ME, Amrine DE, White BJ (2013) Remote noninvasive assessment of pain and health status in cattle. Vet Clin Food Anim Pract 29:59–74

    Article  Google Scholar 

  • Timsit E, Assie S, Quiniou R, Seegers H, Bareille N (2011) Early detection of bovine respiratory disease in young bulls using reticulo-rumen temperature boluses. Vet J 190:136–142

    Article  PubMed  Google Scholar 

  • Tomkiewicz SM, Fuller MR, Kie JG, Bates KK (2010) Global positioning system and associated technologies in animal behaviour and ecological research. Philos Trans R Soc B 365:2163–2176

    Article  Google Scholar 

  • Tschandl P, Codella N, Akay BN, Argenziano G, Braun RP, Cabo H, Gutman D, Halpern A, Helba B, Hofmann-Wellenhof R (2019) Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol 20:938–947

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Arendonk JAM (2011) The role of reproductive technologies in breeding schemes for livestock populations in developing countries. Livest Sci 136:29–37

    Article  Google Scholar 

  • Van Schyndel SJ, Bogado Pascottini O, Leblanc SJ (2018) Comparison of cow-side diagnostic techniques for subclinical endometritis in dairy cows. Theriogenology 120:117–122

    Article  PubMed  Google Scholar 

  • Van Veen TS (1997) Sense or nonsense? Traditional methods of animal parasitic disease control. Vet Parasitol 71:177–194

    Article  Google Scholar 

  • Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N (2017) Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res 48:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Visen N, Paliwal J, Jayas D, White N (2002) Ae – automation and emerging technologies: specialist neural networks for cereal grain classification. Biosyst Eng 82:151–159

    Article  Google Scholar 

  • Von Holst, D. 1998. The concept of stress and its relevance for animal behavior

    Book  Google Scholar 

  • Walker P, Subasinghe RP (2000) DNA-based molecular diagnostic techniques: research needs for standardization and validation of the detection of aquatic animal pathogens and diseases. Food & Agriculture Org

    Google Scholar 

  • Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892

    Article  CAS  PubMed  Google Scholar 

  • Wathes C, Kristensen H, Aerts J, Berckmans D (2005) Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? In: Cox S (ed) Precision livestock farming’05. Proceedings of the 2nd European conference on precision livestock farming, pp 33–46

    Google Scholar 

  • Weary D, Huzzey J, Von Keyserlingk M (2009) Board-invited review: using behavior to predict and identify ill health in animals. J Anim Sci 87:770–777

    Article  CAS  PubMed  Google Scholar 

  • Willatt D (1993) Continuous infrared thermometry of the nasal mucosa. Rhinology 31:63–67

    CAS  PubMed  Google Scholar 

  • Yanase J, Triantaphyllou E (2019) A systematic survey of computer-aided diagnosis in medicine: past and present developments. Expert Syst Appl 138:112821

    Article  Google Scholar 

  • Zeineldin M, Yassein AE-R, Hassam E-A, Mohamed G (2016) Lung ultrasonography and computer-aided scoring system as a diagnostic aid for bovine respiratory disease in feedlot cattle. Global Veterinaria 17:588–594

    CAS  Google Scholar 

  • Zeineldin M, Lowe J, De Godoy M, Maradiaga N, Ramirez C, Ghanem M, Abd El-Raof Y, Aldridge B (2017a) Disparity in the nasopharyngeal microbiota between healthy cattle on feed, at entry processing and with respiratory disease. Vet Microbiol 208:30–37

    Article  PubMed  Google Scholar 

  • Zeineldin M, Ghanem M, Abd El-Raof Y, Elattar H (2017b) Clinical utilization of point-of-care blood L-lactate concentrations in naturally occurring respiratory disease in feedlot cattle. Pak Vet J 37

    Google Scholar 

  • Zeineldin M, Aldridge B, Lowe J (2019a) Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome. Front Microbiol 10:1035

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeineldin M, Lowe J, Aldridge B (2019b) Contribution of the mucosal microbiota to bovine respiratory health. Trends Microbiol 27:753–770

    Article  CAS  PubMed  Google Scholar 

  • Zin TT, Kobayashi I, Tin P, Hama H (2016) A general video surveillance framework for animal behavior analysis. In: 2016 third international conference on computing measurement control and sensor network (CMCSN). IEEE, pp 130–133

    Chapter  Google Scholar 

  • Zumla A, Al-Tawfiq JA, Enne VI, Kidd M, Drosten C, Breuer J, Muller MA, Hui D, Maeurer M, Bates M, Mwaba P, Al-Hakeem R, Gray G, Gautret P, Al-Rabeeah AA, Memish ZA, Gant V (2014) Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections – needs, advances, and future prospects. Lancet Infect Dis 14:1123–1135

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelfattah Z. M. Salem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeineldin, M. et al. (2021). On-Farm Point-of-Care Diagnostic Technologies for Monitoring Health, Welfare, and Performance in Livestock Production Systems. In: Yata, V.K., Mohanty, A.K., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 54. Sustainable Agriculture Reviews, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-030-76529-3_7

Download citation

Publish with us

Policies and ethics