Skip to main content

Purkinje Cell Dendrites: The Time-Tested Icon in Histology

  • Conference paper
  • First Online:
Cerebellum as a CNS Hub

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1025 Accesses

Abstract

Neurons develop a wide variety of cell-type-specific shapes of dendrites. Nevertheless, the underlying mechanisms remain largely unclear in the mammalian central nervous system in vivo mainly due to the difficulty in observing and manipulating the rapid and non-synchronous changes in dendritic shapes during development. Cerebellar Purkinje cells (PCs), which slowly develop dendrites over several postnatal weeks in a relatively stereotypical manner, have provided an excellent model system. Recent genetic tools have identified two principles that specify the dendritic morphology of PCs. First, the same molecule, such as RORα, T3, and PGC-1α, could exert distinct functions at different developmental stages. Second, competition between dendrites from the same or neighboring PCs likely regulates the extensions of dendrites and their planarity. Furthermore, neuronal activities likely contribute to the maturation and stabilization of dendrites. Future studies are warranted to clarify whether and how defective dendritic growth is related to the pathology of PCs in certain neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, G.W. (2008). Thyroid hormone and cerebellar development. Cerebellum (London, England) 7, 60–74.

    Google Scholar 

  • Andrews, W. D., Barber, M., & Parnavelas, J. G. (2007). Slit-Robo interactions during cortical development. Journal of Anatomy, 211, 188–198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Angliker, N., Burri, M., Zaichuk, M., Fritschy, J. M., & Rüegg, M. A. (2015). mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. The European Journal of Neuroscience, 42, 2595–2612.

    Article  PubMed  Google Scholar 

  • Barnabé-Heider, F., Meletis, K., Eriksson, M., Bergmann, O., Sabelström, H., Harvey, M. A., Mikkers, H., & Frisén, J. (2008). Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nature Methods, 5, 189–196.

    Article  PubMed  Google Scholar 

  • Berry, M., & Bradley, P. (1976a). The growth of the dendritic trees of Purkinje cells in the cerebellum of the rat. Brain Research, 112, 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Berry, M., & Bradley, P. (1976b). The growth of the dendritic trees of Purkinje cells in irradiated agranular cerebellar cortex. Brain Research, 116, 361–387.

    Article  CAS  PubMed  Google Scholar 

  • Bosman, L. W., & Konnerth, A. (2009). Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses. Neuroscience, 162, 612–623.

    Article  CAS  PubMed  Google Scholar 

  • Boukhtouche, F., Brugg, B., Wehrlé, R., Bois-Joyeux, B., Danan, J. L., Dusart, I., & Mariani, J. (2010). Induction of early Purkinje cell dendritic differentiation by thyroid hormone requires RORα. Neural Development, 5, 18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boukhtouche, F., Janmaat, S., Vodjdani, G., Gautheron, V., Mallet, J., Dusart, I., & Mariani, J. (2006). Retinoid-related orphan receptor alpha controls the early steps of Purkinje cell dendritic differentiation. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 26, 1531–1538.

    Article  CAS  Google Scholar 

  • Bradley, D. J., Towle, H. C., & Young, W. S., 3rd. (1992). Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 12, 2288–2302.

    Article  CAS  Google Scholar 

  • Bradley, P., & Berry, M. (1978). The Purkinje cell dendritic tree in mutant mouse cerebellum. A quantitative Golgi study of Weaver and Staggerer mice. Brain Research, 142, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Callaway, E. M., & Borrell, V. (2011). Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: Influence of retinal input. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 31, 7456–7470.

    Article  CAS  Google Scholar 

  • Caviness, V. S., Jr., & Rakic, P. (1978). Mechanisms of cortical development: A view from mutations in mice. Annual Review of Neuroscience, 1, 297–326.

    Article  PubMed  Google Scholar 

  • Chen, D. H., Cimino, P. J., Ranum, L. P., Zoghbi, H. Y., Yabe, I., Schut, L., Margolis, R. L., Lipe, H. P., Feleke, A., Matsushita, M., et al. (2005). The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology, 64, 1258–1260.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. R., Heck, N., Lohof, A. M., Rochefort, C., Morel, M. P., Wehrlé, R., Doulazmi, M., Marty, S., Cannaya, V., Avci, H. X., et al. (2013). Mature Purkinje cells require the retinoic acid-related orphan receptor-α (RORα) to maintain climbing fiber mono-innervation and other adult characteristics. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33, 9546–9562.

    Article  CAS  Google Scholar 

  • Fauquier, T., Chatonnet, F., Picou, F., Richard, S., Fossat, N., Aguilera, N., Lamonerie, T., & Flamant, F. (2014). Purkinje cells and Bergmann glia are primary targets of the TRα1 thyroid hormone receptor during mouse cerebellum postnatal development. Development (Cambridge, England), 141, 166–175.

    Article  CAS  Google Scholar 

  • Faustino, L. C., & Ortiga-Carvalho, T. M. (2014). Thyroid hormone role on cerebellar development and maintenance: A perspective based on transgenic mouse models. Frontiers in Endocrinology, 5, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuerst, P. G., Bruce, F., Tian, M., Wei, W., Elstrott, J., Feller, M. B., Erskine, L., Singer, J. H., & Burgess, R. W. (2009). DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron, 64, 484–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuerst, P. G., Koizumi, A., Masland, R. H., & Burgess, R. W. (2008). Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature, 451, 470–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujishima, K., Horie, R., Mochizuki, A., & Kengaku, M. (2012). Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites. Development (Cambridge, England), 139, 3442–3455.

    Article  CAS  Google Scholar 

  • Fukumitsu, K., Fujishima, K., Yoshimura, A., Wu, Y. K., Heuser, J., & Kengaku, M. (2015). Synergistic action of dendritic mitochondria and creatine kinase maintains ATP homeostasis and actin dynamics in growing neuronal dendrites. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 35, 5707–5723.

    Article  CAS  Google Scholar 

  • Gao, Y., Perkins, E. M., Clarkson, Y. L., Tobia, S., Lyndon, A. R., Jackson, M., & Rothstein, J. D. (2011). β-III spectrin is critical for development of purkinje cell dendritic tree and spine morphogenesis. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 31, 16581–16590.

    Article  CAS  Google Scholar 

  • Garrett, A. M., Schreiner, D., Lobas, M. A., & Weiner, J. A. (2012). γ-Protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron, 74, 269–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson, D. A., Tymanskyj, S., Yuan, R. C., Leung, H. C., Lefebvre, J. L., Sanes, J. R., Chédotal, A., & Ma, L. (2014). Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron, 81, 1040–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold, D. A., Baek, S. H., Schork, N. J., Rose, D. W., Larsen, D. D., Sachs, B. D., Rosenfeld, M. G., & Hamilton, B. A. (2003). RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron, 40, 1119–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, B. A., Frankel, W. N., Kerrebrock, A. W., Hawkins, T. L., FitzHugh, W., Kusumi, K., Russell, L. B., Mueller, K. L., van Berkel, V., Birren, B. W., et al. (1996). Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature, 379, 736–739.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, K., Curty, F. H., Borges, P. P., Lee, C. E., Abel, E. D., Elmquist, J. K., Cohen, R. N., & Wondisford, F. E. (2001). An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 98, 3998–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, K., & Kano, M. (2005). Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neuroscience Research, 53, 221–228.

    Article  PubMed  Google Scholar 

  • Hatanaka, Y., & Hirata, T. (2020). How do cortical excitatory neurons terminate their migration at the right place? Critical roles of environmental elements. Frontiers in Cell and Developmental Biology, 8, 596708.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatsukano, T., Kurisu, J., Fukumitsu, K., Fujishima, K., & Kengaku, M. (2017). Thyroid hormone induces PGC-1α during dendritic outgrowth in mouse cerebellar Purkinje cells. Frontiers in Cellular Neuroscience, 11, 133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heuer, H., & Mason, C. A. (2003). Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 23, 10604–10612.

    Article  CAS  Google Scholar 

  • Hirai, H., & Launey, T. (2000). The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 20, 5217–5224.

    Article  CAS  Google Scholar 

  • Hirai, H., & Matsuda, S. (1999). Interaction of the C-terminal domain of delta glutamate receptor with spectrin in the dendritic spines of cultured Purkinje cells. Neuroscience Research, 34, 281–287.

    Article  CAS  PubMed  Google Scholar 

  • Hisatsune, C., Kuroda, Y., Akagi, T., Torashima, T., Hirai, H., Hashikawa, T., Inoue, T., & Mikoshiba, K. (2006). Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 26, 10916–10924.

    Article  CAS  Google Scholar 

  • Horton, A. C., Rácz, B., Monson, E. E., Lin, A. L., Weinberg, R. J., & Ehlers, M. D. (2005). Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron, 48, 757–771.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L., Chardon, J. W., Carter, M. T., Friend, K. L., Dudding, T. E., Schwartzentruber, J., Zou, R., Schofield, P. W., Douglas, S., Bulman, D. E., et al. (2012). Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet Journal of Rare Diseases, 7, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibata, K., Kono, M., Narumi, S., Motohashi, J., Kakegawa, W., Kohda, K., & Yuzaki, M. (2019). Activity-dependent secretion of synaptic organizer Cbln1 from lysosomes in granule cell axons. Neuron, 102, 1184–1198.e1110.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa, R., Hashimoto, K., Miyazaki, T., Uchigashima, M., Yamasaki, M., Aiba, A., Kano, M., & Watanabe, M. (2016). Territories of heterologous inputs onto Purkinje cell dendrites are segregated by mGluR1-dependent parallel fiber synapse elimination. Proceedings of the National Academy of Sciences of the United States of America, 113, 2282–2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa, R., Miyazaki, T., Kano, M., Hashikawa, T., Tatsumi, H., Sakimura, K., Mishina, M., Inoue, Y., & Watanabe, M. (2002). Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor delta 2. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22, 8487–8503.

    Article  CAS  Google Scholar 

  • Ikeda, Y., Dick, K. A., Weatherspoon, M. R., Gincel, D., Armbrust, K. R., Dalton, J. C., Stevanin, G., Dürr, A., Zühlke, C., Bürk, K., et al. (2006). Spectrin mutations cause spinocerebellar ataxia type 5. Nature Genetics, 38, 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Inberg, S., Meledin, A., Kravtsov, V., Iosilevskii, Y., Oren-Suissa, M., & Podbilewicz, B. (2019). Lessons from worm dendritic patterning. Annual Review of Neuroscience, 42, 365–383.

    Article  CAS  PubMed  Google Scholar 

  • Ing-Esteves, S., Kostadinov, D., Marocha, J., Sing, A. D., Joseph, K. S., Laboulaye, M. A., Sanes, J. R., & Lefebvre, J. L. (2018). Combinatorial effects of alpha- and gamma-Protocadherins on neuronal survival and dendritic self-avoidance. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 38, 2713–2729.

    Article  CAS  Google Scholar 

  • Jan, Y. N., & Jan, L. Y. (2010). Branching out: Mechanisms of dendritic arborization. Nature Reviews. Neuroscience, 11, 316–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo, W., Hippenmeyer, S., & Luo, L. (2014). Neurodevelopment. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science (New York, N.Y.), 346, 626–629.

    Article  CAS  Google Scholar 

  • Kakegawa, W., Mitakidis, N., Miura, E., Abe, M., Matsuda, K., Takeo, Y. H., Kohda, K., Motohashi, J., Takahashi, A., Nagao, S., et al. (2015). Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron, 85, 316–329.

    Article  CAS  PubMed  Google Scholar 

  • Kalinovsky, A., Boukhtouche, F., Blazeski, R., Bornmann, C., Suzuki, N., Mason, C. A., & Scheiffele, P. (2011). Development of axon-target specificity of ponto-cerebellar afferents. PLoS Biology, 9, e1001013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko, M., Yamaguchi, K., Eiraku, M., Sato, M., Takata, N., Kiyohara, Y., Mishina, M., Hirase, H., Hashikawa, T., & Kengaku, M. (2011). Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation. PLoS One, 6, e20108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapfhammer, J. P. (2004). Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Progress in Histochemistry and Cytochemistry, 39, 131–182.

    Article  PubMed  Google Scholar 

  • Kawabata Galbraith, K., Fujishima, K., Mizuno, H., Lee, S. J., Uemura, T., Sakimura, K., Mishina, M., Watanabe, N., & Kengaku, M. (2018). MTSS1 regulation of actin-nucleating Formin DAAM1 in dendritic Filopodia determines final dendritic configuration of Purkinje cells. Cell Rep, 24, 95–106.e109.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Kwon, N., Chang, S., Kim, K. T., Lee, D., Kim, S., Yun, S. J., Hwang, D., Kim, J. W., Hwu, Y., et al. (2011). Altered branching patterns of Purkinje cells in mouse model for cortical development disorder. Scientific Reports, 1, 122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuwako, K. I., & Okano, H. (2018). The LKB1-SIK pathway controls dendrite self-avoidance in Purkinje cells. Cell Reports, 24, 2808–2818.e2804.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, J. L., Kostadinov, D., Chen, W. V., Maniatis, T., & Sanes, J. R. (2012). Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature, 488, 517–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre, J. L., Sanes, J. R., & Kay, J. N. (2015). Development of dendritic form and function. Annual Review of Cell and Developmental Biology, 31, 741–777.

    Article  CAS  PubMed  Google Scholar 

  • Lordkipanidze, T., & Dunaevsky, A. (2005). Purkinje cell dendrites grow in alignment with Bergmann glia. Glia, 51, 229–234.

    Article  PubMed  Google Scholar 

  • Louis, E. D., Kuo, S. H., Vonsattel, J. P., & Faust, P. L. (2014). Torpedo formation and Purkinje cell loss: Modeling their relationship in cerebellar disease. Cerebellum (London, England), 13, 433–439.

    Article  Google Scholar 

  • Matsuda, K., Miura, E., Miyazaki, T., Kakegawa, W., Emi, K., Narumi, S., Fukazawa, Y., Ito-Ishida, A., Kondo, T., Shigemoto, R., et al. (2010). Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science (New York, N.Y.), 328, 363–368.

    Article  CAS  Google Scholar 

  • Matsumoto, K., Wanaka, A., Mori, T., Taguchi, A., Ishii, N., Muramatsu, H., Muramatsu, T., & Tohyama, M. (1994). Localization of pleiotrophin and midkine in the postnatal developing cerebellum. Neuroscience Letters, 178, 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Mellström, B., Naranjo, J. R., Santos, A., Gonzalez, A. M., & Bernal, J. (1991). Independent expression of the alpha and beta c-erbA genes in developing rat brain. Molecular Endocrinology, 5, 1339–1350.

    Article  PubMed  Google Scholar 

  • Miyata, T., Ono, Y., Okamoto, M., Masaoka, M., Sakakibara, A., Kawaguchi, A., Hashimoto, M., & Ogawa, M. (2010). Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Development, 5, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki, T., Yamasaki, M., Hashimoto, K., Kohda, K., Yuzaki, M., Shimamoto, K., Tanaka, K., Kano, M., & Watanabe, M. (2017). Glutamate transporter GLAST controls synaptic wrapping by Bergmann glia and ensures proper wiring of Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 114, 7438–7443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki, T., Yamasaki, M., Takeuchi, T., Sakimura, K., Mishina, M., & Watanabe, M. (2010). Ablation of glutamate receptor GluRδ2 in adult Purkinje cells causes multiple innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 30, 15196–15209.

    Article  CAS  Google Scholar 

  • Nagata, I., Ono, K., Kawana, A., & Kimura-Kuroda, J. (2006). Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures. The Journal of Comparative Neurology, 499, 274–289.

    Article  PubMed  Google Scholar 

  • Nakazawa, S., Mizuno, H., & Iwasato, T. (2018). Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates. Nature Communications, 9, 3106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niell, C. M., Meyer, M. P., & Smith, S. J. (2004). In vivo imaging of synapse formation on a growing dendritic arbor. Nature Neuroscience, 7, 254–260.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, J., Hayashi, Y., Nomura, T., Miura, E., Kakegawa, W., & Yuzaki, M. (2012). Selective and regulated gene expression in murine Purkinje cells by in utero electroporation. The European Journal of Neuroscience, 36, 2867–2876.

    Article  PubMed  Google Scholar 

  • Novak, M. J., Sweeney, M. G., Li, A., Treacy, C., Chandrashekar, H. S., Giunti, P., Goold, R. G., Davis, M. B., Houlden, H., & Tabrizi, S. J. (2010). An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Movement Disorders, 25, 2176–2182.

    Article  PubMed  Google Scholar 

  • Oberdick, J., Smeyne, R. J., Mann, J. R., Zackson, S., & Morgan, J. I. (1990). A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science (New York, N.Y.), 248, 223–226.

    Article  CAS  Google Scholar 

  • Schreiner, D., & Weiner, J. A. (2010). Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proceedings of the National Academy of Sciences of the United States of America, 107, 14893–14898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra, H. G., Duvick, L., Zu, T., Carlson, K., Stevens, S., Jorgensen, N., Lysholm, A., Burright, E., Zoghbi, H. Y., Clark, H. B., et al. (2006). RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell, 127, 697–708.

    Article  CAS  PubMed  Google Scholar 

  • Shima, Y., Kengaku, M., Hirano, T., Takeichi, M., & Uemura, T. (2004). Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin. Developmental Cell, 7, 205–216.

    Article  CAS  PubMed  Google Scholar 

  • Shimobayashi, E., Wagner, W., & Kapfhammer, J. P. (2016). Carbonic anhydrase 8 expression in Purkinje cells is controlled by PKCγ activity and regulates Purkinje cell dendritic growth. Molecular Neurobiology, 53, 5149–5160.

    Article  CAS  PubMed  Google Scholar 

  • Sidman, R. L., Lane, P. W., & Dickie, M. M. (1962). Staggerer, a new mutation in the mouse affecting the cerebellum. Science (New York, N.Y.), 137, 610–612.

    Article  CAS  Google Scholar 

  • Smeyne, R. J., Oberdick, J., Schilling, K., Berrebi, A. S., Mugnaini, E., & Morgan, J. I. (1991). Dynamic organization of developing Purkinje cells revealed by transgene expression. Science (New York, N.Y.), 254, 719–721.

    Article  CAS  Google Scholar 

  • Soha, J. M., & Herrup, K. (1995). Stunted morphologies of cerebellar Purkinje cells in lurcher and staggerer mice are cell-intrinsic effects of the mutant genes. The Journal of Comparative Neurology, 357, 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Sotelo, C., & Dusart, I. (2009). Intrinsic versus extrinsic determinants during the development of Purkinje cell dendrites. Neuroscience, 162, 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Strait, K. A., Schwartz, H. L., Seybold, V. S., Ling, N. C., & Oppenheimer, J. H. (1991). Immunofluorescence localization of thyroid hormone receptor protein beta 1 and variant alpha 2 in selected tissues: Cerebellar Purkinje cells as a model for beta 1 receptor-mediated developmental effects of thyroid hormone in brain. Proceedings of the National Academy of Sciences of the United States of America, 88, 3887–3891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara, T., Hisatsune, C., Miyamoto, H., Ogawa, N., & Mikoshiba, K. (2017). Regulation of spinogenesis in mature Purkinje cells via mGluR/PKC-mediated phosphorylation of CaMKIIβ. Proceedings of the National Academy of Sciences of the United States of America, 114, E5256–e5265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundararajan, L., Stern, J., & Miller, D. M., 3rd. (2019). Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans. Developmental Biology, 451, 53–67.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Arstikaitis, P., Prasad, T., Bartlett, T. E., Wang, Y. T., Murphy, T. H., & Craig, A. M. (2011). Postsynaptic TrkC and presynaptic PTPσ function as a bidirectional excitatory synaptic organizing complex. Neuron, 69, 287–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeo, Y. H. (2016). In utero electroporation of mouse cerebellar Purkinje cells. Bio-Protocol, 6, e1835.

    Article  Google Scholar 

  • Takeo, Y. H., Kakegawa, W., Miura, E., & Yuzaki, M. (2015). RORα regulates multiple aspects of dendrite development in cerebellar Purkinje cells in vivo. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 35, 12518–12534.

    Article  CAS  Google Scholar 

  • Takeo, Y. H., Shuster, S. A., Jiang, L., Hu, M. C., Luginbuhl, D. J., Rülicke, T., Contreras, X., Hippenmeyer, S., Wagner, M. J., Ganguli, S., et al. (2021). GluD2- and Cbln1-mediated competitive interactions shape the dendritic arbors of cerebellar Purkinje cells. Neuron, 109, 629–644.

    Google Scholar 

  • Tanabe, K., Kani, S., Shimizu, T., Bae, Y. K., Abe, T., & Hibi, M. (2010). Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 30, 16983–16992.

    Article  CAS  Google Scholar 

  • Tanaka, M., Maeda, N., Noda, M., & Marunouchi, T. (2003). A chondroitin sulfate proteoglycan PTPzeta /RPTPbeta regulates the morphogenesis of Purkinje cell dendrites in the developing cerebellum. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience, 23, 2804–2814.

    Article  CAS  Google Scholar 

  • Tomomura, M., Rice, D. S., Morgan, J. I., & Yuzaki, M. (2001). Purification of Purkinje cells by fluorescence-activated cell sorting from transgenic mice that express green fluorescent protein. The European Journal of Neuroscience, 14, 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Toyoda, S., Kawaguchi, M., Kobayashi, T., Tarusawa, E., Toyama, T., Okano, M., Oda, M., Nakauchi, H., Yoshimura, Y., Sanbo, M., et al. (2014). Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron, 82, 94–108.

    Article  CAS  PubMed  Google Scholar 

  • Usala, S. J., Menke, J. B., Watson, T. L., Wondisford, F. E., Weintraub, B. D., Bérard, J., Bradley, W. E., Ono, S., Mueller, O. T., & Bercu, B. B. (1991). A homozygous deletion in the c-erbA beta thyroid hormone receptor gene in a patient with generalized thyroid hormone resistance: Isolation and characterization of the mutant receptor. Molecular Endocrinology, 5, 327–335.

    Article  CAS  PubMed  Google Scholar 

  • van de Leemput, J., Chandran, J., Knight, M. A., Holtzclaw, L. A., Scholz, S., Cookson, M. R., Houlden, H., Gwinn-Hardy, K., Fung, H. C., Lin, X., et al. (2007). Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genetics, 3, e108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe, F., Miyazaki, T., Takeuchi, T., Fukaya, M., Nomura, T., Noguchi, S., Mori, H., Sakimura, K., Watanabe, M., & Mishina, M. (2008). Effects of FAK ablation on cerebellar foliation, Bergmann glia positioning and climbing fiber territory on Purkinje cells. The European Journal of Neuroscience, 27, 836–854.

    Article  PubMed  Google Scholar 

  • Weiss, G. M., & Pysh, J. J. (1978). Evidence for loss of Purkinje cell dendrites during late development: A morphometric Golgi analysis in the mouse. Brain Research, 154, 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Wewetzer, K., Rauvala, H., & Unsicker, K. (1995). Immunocytochemical localization of the heparin-binding growth-associated molecule (HB-GAM) in the developing and adult rat cerebellar cortex. Brain Research, 693, 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Williams, D. W., & Truman, J. W. (2005). Remodeling dendrites during insect metamorphosis. Journal of Neurobiology, 64, 24–33.

    Article  CAS  PubMed  Google Scholar 

  • Yagi, T. (2012). Molecular codes for neuronal individuality and cell assembly in the brain. Frontiers in Molecular Neuroscience, 5, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, W. K., & Chien, C. T. (2019). Beyond being innervated: The epidermis actively shapes sensory dendritic patterning. Open Biology, 9, 180257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, L., Iwasaki, T., Xu, M., Lesmana, R., Xiong, Y., Shimokawa, N., Chin, W. W., & Koibuchi, N. (2015). Aberrant cerebellar development of transgenic mice expressing dominant-negative thyroid hormone receptor in cerebellar Purkinje cells. Endocrinology, 156, 1565–1576.

    Article  CAS  PubMed  Google Scholar 

  • Zipursky, S. L., & Grueber, W. B. (2013). The molecular basis of self-avoidance. Annual Review of Neuroscience, 36, 547–568.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CREST from Japan Science and Technology Corporation (M.Y.), Grant-in-Aid for the Ministry of Education, Culture, Sports, Science and Technology of Japan (W.K. and M.Y.), Japan Society for the Promotion of Science (Y-H.T., W.K., M.Y.).

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukari H. Takeo or Michisuke Yuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Takeo, Y.H., Yuzaki, M. (2021). Purkinje Cell Dendrites: The Time-Tested Icon in Histology. In: Mizusawa, H., Kakei, S. (eds) Cerebellum as a CNS Hub. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-75817-2_7

Download citation

Publish with us

Policies and ethics