Validation of Automatically Generated Forging Sequences by Using FE Simulations

Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


To increase the economic efficiency in the production of geometrically complicated forgings, material efficiency is a determining factor. In this study, a method is being validated to automatically design a multi-staged forging sequence initially based on the CAD file of the forging. The method is intended to generate material-efficient forging sequences and reduce development time and dependence on reference processes in the design of forging sequences. Artificial neural networks are used to analyze the geometry of the forging and classify it into a shape class. Result of the analysis is information on component characteristics, such as bending and holes. From this, special operations such as a bending process in the forging sequence can be derived. A slicer algorithm is used to divide the CAD file of the forging into cutting planes and calculate the mass distribution around the center of gravity line of the forging. An algorithm approaches the mass distribution and cross-sectional contour step by step from the forging to the semi-finished product. Each intermediate form is exported as a CAD file. The algorithm takes less than 10 min to design a four-stage forging sequence. The designed forging sequences are checked by FE simulations. Quality criteria that are evaluated and investigated are form filling and folds. First FE simulations show that the automatically generated forging sequences allow the production of different forgings. In an iterative adaptation process, the results of the FE simulations are used to adjust the method to ensure material-efficient and process-reliable forging sequences.


Automatic process design Forging FEA Resource efficiency CAD 



The research project “Design of efficient forging sequences with mass distribution around the center of gravity line for forging parts” (IGF project 19752) has been funded by the German Federation of Industrial Research Associations (AiF). The authors thank the AiF for its support.


  1. 1.
    Behrens B-A, Nickel R, Müller S (2009) Flashless precision forging of a two-cylinder crankshaft. Prod Eng 3(4–5):381–389CrossRefGoogle Scholar
  2. 2.
    Denkena B, Park HS, Behrens BA, Henjes J, Bertys S (2013) Development of a concept to optimize the energy efficiency in forging process chains. Int J Precis Eng Manuf 14(7):1229–1236CrossRefGoogle Scholar
  3. 3.
    Mathieu H (1991) Ein Beitrag zur Auslegung von Stadienfolgen beim Gesenkschmieden mit Grat. Fortschritt-Berichte VDI Reihe 2: Fertigungstechnik Nr. 213, VDI-Verlag, DüsseldorfGoogle Scholar
  4. 4.
    Hedicke Y, Langner J, Stonis M, Behrens BA (2018) Innovativer Ansatz zur effizienten Stadienplanung. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 113(10):668–672Google Scholar
  5. 5.
    Behrens BA, Wolter FE, Blanke P, Santangelo A Inverse 3D-Materialflusssimulation zur Zwischenformauslegung für das Gesenkschmieden. The visual computer, 27, pp 129–139Google Scholar
  6. 6.
    Guan Y, Bai X, Liu M, Song L, Zhao G (2015) Preform design in forging process of complex parts by using quasi-equipotential field and response surface methods. Int J Adv Manuf Technol 79(1–4):21–29CrossRefGoogle Scholar
  7. 7.
    Torabi SHR, Alibabaei S, Bonab BB, Sadeghi MH, Faraji G (2017) Design and optimization of turbine blade preform forging using RSM and NSGA II. J Intell Manuf 28(6):1409–1419CrossRefGoogle Scholar
  8. 8.
    Knust J, Podszus F, Stonis M, Behrens BA, Overmeyer L, Ullmann G (2016) Preform optimization for hot forging processes using genetic algorithms. Intell J Adv Manuf Technol 89(5–8):1623–1634Google Scholar
  9. 9.
    Knust J, Stonis M, Behrens B-A (2016) Preform optimization for hot forging processes using an adaptive amount of flash based on the cross section shape complexity. Prod Eng Res Devel 10(6):587–598CrossRefGoogle Scholar
  10. 10.
    Alimirzaloo V, Biglari FR, Sadeghi MH, Keshtiban PM, Sehat HR (2019) A novel method for preform die design in forging process of an airfoil blade based on La-grange interpolation and meta-heuristic algorithm. Int J Adv Manuf Technol 102(9–12):4031–4045CrossRefGoogle Scholar
  11. 11.
    Shao Y, Ou H, Guo P, Yang H (2019) Shape optimization of preform tools in forging of aerofoil using a metamodel-assisted multi-island genetic algorithm. J Chin Inst Eng 42(4):297–308CrossRefGoogle Scholar
  12. 12.
    Shao Y, Yan L, Guo P, Yang H, Shi F, Feng D (2019) A comprehensive study on fitness approximation techniques in shape optimization of aerofoil forging preform tools. Metals 9(6):617CrossRefGoogle Scholar
  13. 13.
    Spies K (1957) Eine Formenordnung für Gesenkschmiedestücke. Werkstattstechnik und Ma-schinenbau 47:201–205Google Scholar
  14. 14.
    Hedicke-Claus Y, Langner J, Stonis M, Behrens BA (2019) Klassifizierung von Schmiedeteilen mittels KNN, wt-online 11/12–2019, pp 822–827Google Scholar
  15. 15.
    Blohm T, Mildebrath M, Stonis M, Langner J, Hassel T, Behrens BA (2017) Investigation of the coating thickness of plasma-transferred arc deposition welded and cross wedge rolled hybrid parts. Prod Eng Res Devel 11(3):255–263CrossRefGoogle Scholar
  16. 16.
    Hensel A, Spittel T (1978) Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren, Deutscher Verlag für GrundstoffindustrieGoogle Scholar
  17. 17.
    Behrens BA, Röhr S, Schäfer F, Hundertmark A (2007) Untersuchungen zur numerischen Ermittlung von Schmiedefalten. UTF-Science, 2Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2021

Authors and Affiliations

  1. 1.IPH-Institut Für Integrierte Produktion Hannover gGmbHHannoverGermany

Personalised recommendations