Skip to main content

Technology Analysis for Logistics 4.0 Applications: Criteria Affecting UAV Performances

  • Chapter
  • First Online:
Intelligent and Fuzzy Techniques in Aviation 4.0

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 372))

Abstract

Industry 4.0 revolution and elements related to it such as IoT technologies, artificial intelligence, cognitive computing, big data analytics, and digitization of systems initiated a transformation in almost every industry and application area. This big revolution step generated a paradigm shift in the aviation industry too, addressing a new concept called Aviation 4.0. As IoT aided logistics application devices, which are designed to be remotely administered, UAVs attract more attention and get popular every day, and employment of this technology in delivery or transportation processes becomes the new trend, due to its competency on operating in difficult or dangerous geographical areas, lower resource consumption, higher mobility level, faster response feature, plus contactless and sustainable delivery potential. 10 different performance indicators related to UAVs are investigated with two different fuzzy number styles, named hesitant and Pythagorean fuzzy numbers, respectively, and AHP MCDM methodology, in this study. The results implied that the first two important key factors were determined as privacy and economic life of UAVs in logistic activities with respect to Aviation 4.0. In order for the process of using UAVs in logistics applications within the scope of aviation 4.0 to be successful, attention must be paid to the features related to the privacy and economic life of the utilized UAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Büyüközkan, G., Feyzioğlu, O., Havle, C.A.: Analysis of success factors in aviation 4.0 using integrated intuitionistic fuzzy MCDM methods. https://doi.org/10.1007/978-3-030-23756-1_73. Retrieved from www.scopus.com. (2020)

  2. Arnaldo Valdes, R., Gómez Comendador, V.F.: Aviation 4.0: more safety through automation and digitization. Paper Presented WIT Trans. Built Environ. 174, 225–236 (2018). https://doi.org/10.2495/SAFE170211

    Article  Google Scholar 

  3. Choudhary, G., Sharma, V., Gupta, T., Kim, J., You, I.: Internet of Drones (IoD): threats, vulnerability, and security perspectives. In The 3rd International Symposium on Mobile Internet Security (MobiSec’18), Aug 29–Sept 1, 2018, Cebu, Philippines, Article No. 37, pp. 1–13 (2018)

    Google Scholar 

  4. Mehta, P., Gupta, R., Tanwar, S.: Blockchain envisioned UAV networks: challenges, solutions, and comparisons. Comput. Commun. 151, 518–538 (2020). https://doi.org/10.1016/j.comcom.2020.01.023

    Article  Google Scholar 

  5. Torens, C., Dauer, J. C., Adolf, F.: Towards autonomy and safety for unmanned aircraft systems. In Advances in Aeronautical Informatics: Technologies Towards Flight 4.0, pp. 105–120. https://doi.org/10.1007/978-3-319-75058-3_8 (2018)

  6. Mavris, D.N., Collins, K.B., Schrage, D.P.: A method of qualitative analysis during conceptual design as applied to unmanned aerial vehicles. Paper Presented Ann. Forum Proc. Am. Helicopter Soc. 1, 642–655 (2004)

    Google Scholar 

  7. Fitzgerald, D.L., Mejias, L., Eng, P., Liu, X., Walker, R.: Towards flight trials for an autonomous UAV emergency landing using machine vision. Paper presented at the proceedings of the 2007 Australasian conference on robotics and automation, ACRA 2007 (2007)

    Google Scholar 

  8. Fallahi, K., Leung, H., Chandana, S.: An integrated ACO-AHP approach for resource management optimization. Paper presented at the conference proceedings—IEEE international conference on systems, man and cybernetics, pp. 4335–4340.https://doi.org/10.1109/ICSMC.2009.5346794 (2009)

  9. Li, X., Ci, L., Yang, M., Cheng, B.: Exploration-exploitation balancing deployment strategy in UAV sensor networks. Information 14(8), 2701–2710 (2011)

    Google Scholar 

  10. Sun, X., Cai, C., Yang, J., Shen, X.: Route evaluation for unmanned aerial vehicle based on type-2 fuzzy sets. Eng. Appl. Artif. Intell. 39, 132–145 (2015). https://doi.org/10.1016/j.engappai.2014.11.008

    Article  Google Scholar 

  11. Sariçiçek, I., Akkuş, Y.: Unmanned aerial vehicle hub-location and routing for monitoring geographic borders. Appl. Math. Model. 39(14), 3939–3953 (2015). https://doi.org/10.1016/j.apm.2014.12.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Petkovics, I., Simon, J., Petkovics, A., Covic, Z.: Selection of unmanned aerial vehicle for precision agriculture with multi-criteria decision making algorithm. Paper presented at the SISY 2017—IEEE 15th international symposium on intelligent systems and informatics, proceedings, pp. 151–155. https://doi.org/10.1109/SISY.2017.8080543 (2017)

  13. Dursun, M., Çuhadar, İ: Risk based multi criteria decision making for secure image transfer between unmanned air vehicle and ground control station. Reliab. Eng. Syst. Saf. 178, 31–39 (2018). https://doi.org/10.1016/j.ress.2018.05.011

    Article  Google Scholar 

  14. Mondal, T., Bhattacharya, I., Pramanik, P., Boral, N., Roy, J., Saha, S., Saha, S.: A multi-criteria evaluation approach in navigation technique for micro-jet for damage & need assessment in disaster response scenarios. Knowl. Based Syst. 162, 220–237 (2018). https://doi.org/10.1016/j.knosys.2018.09.016

    Article  Google Scholar 

  15. Jung, S., Kim, K., Roh, B., Ham, J.: Load balancing algorithm for multiple UAVs relayed tactical ad hoc networks. Paper Presented Proc. Int. Comput. Softw. Appl. Conf. 1, 944–945 (2019). https://doi.org/10.1109/COMPSAC.2019.00153

    Article  Google Scholar 

  16. Raj, A., Sah, B.: Analyzing critical success factors for implementation of drones in the logistics sector using grey-DEMATEL based approach. Comput. Indus. Eng. 138https://doi.org/10.1016/j.cie.2019.106118 (2019)

  17. Aragão, F.V., Cavicchioli Zola, F., Nogueira Marinho, L.H., De Genaro Chiroli, D.M., Braghini Junior, A., Colmenero, J.C.: Choice of unmanned aerial vehicles for identification of mosquito breeding sites. Geospatial Health 15(1). https://doi.org/10.4081/gh.2020.810 (2020)

  18. Karaşan, A., Kaya, İ.: Neutrosophic TOPSIS method for technology evaluation of unmanned aerial vehicles (UAVs).https://doi.org/10.1007/978-3-030-23756-1_80 (2020)

  19. Yavuz, M., Oztaysi, B., Cevik Onar, S., Kahraman, C.: Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model. Expert Syst. Appl. 42(5), 2835–2848 (2015)

    Article  Google Scholar 

  20. Prinz, C., Morlock, F., Freith, S., Kreggenfeld, N., Kreimeier, D., Kuhlenkötter, B.: Learning factory modules for smart factories in industrie 4.0. Paper Presented Proc. CIRP 54, 113–118 (2016). https://doi.org/10.1016/j.procir.2016.05.105

    Article  Google Scholar 

  21. Strandhagen, J.O., Vallandingham, L.R., Fragapane, G., Strandhagen, J.W., Stangeland, A.B.H., Sharma, N.: Logistics 4.0 and emerging sustainable business models. Adv. Manuf. 5(4), 359–369. https://doi.org/10.1007/s40436-017-0198-1 (2017)

  22. Militaru, G., Popescu, D., Ichim, L.: UAV-to-UAV communication options for civilian applications. Paper presented at the 2018 26th telecommunications forum, TELFOR 2018—proceedings. https://doi.org/10.1109/TELFOR.2018.8612108 (2018)

  23. Petrovsky, A., Doole, M., Ellerbroek, J., Hoekstra, J.M., Tomasello, F.: Challenges with obstacle data for manned and unmanned aviation. Paper Presented Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. ISPRS Arch. 42(4/W10), 143–149. https://doi.org/10.5194/isprs-archives-XLII-4-W10-143-2018 (2018)

  24. Ghafar, N.H., Rahman, N.A.A., Mohammad, M.F.N., Shah, M.Z., Hassan, F.: Developing new aviation management postgraduate program in responding to industry 4.0: Key findings from multistages-multilevels market study. Paper Presented IOP Conf. Ser. Mater. Sci. Eng. 645(1).https://doi.org/10.1088/1757-899X/645/1/012008 (2019)

  25. Cokorilo, O.: Urban air mobility: safety challenges. Paper Presented Transport. Res. Proc. 45, 21–29 (2020). https://doi.org/10.1016/j.trpro.2020.02.058

    Article  Google Scholar 

  26. Dağdeviren, M., Yavuz, S., Kılınç, N.: Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Syst. Appl. 36(8143–8151) (2009)

    Google Scholar 

  27. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Euro. J. Oper. Res. 48, 9–26 (1990)

    Article  Google Scholar 

  28. Yedla, S., Shresta, R.M.: Multi-criteria approach for the selection of alternative options for environmentally sustainable transport system in Delhi. Transport. Res. 37, 717–729 (2003)

    Google Scholar 

  29. Aras, H., Erdogmus, S., Koc, E.: Multi-criteria selection for a wind observation station location using analytic hierarchy process. Renew. Energy 29, 1383–1392 (2004)

    Article  Google Scholar 

  30. Tolga, E., Demircan, M.L., Kahraman, C.: Operating system selection using fuzzy replacement analysis andnanalytic hierarchy process. Int. J. Prod. Econ. 97, 89–117 (2005)

    Article  Google Scholar 

  31. Dağdeviren, M.: Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. J. Intell. Manuf. 19(397–406) (2008)

    Google Scholar 

  32. Kim, P.P., Lee, K.J., Lee, B.W.: Selection of an optimal nuclear fuel cycle scenario by goal programming & analytic hierarchy process. Ann. Nucl. Energy 26, 449–460 (1999)

    Article  Google Scholar 

  33. Ramirez-Atencia, C., Rodriguez-Fernandez, V., Camacho, D.: A revision on multi-criteria decision making methods for multi-UAV mission planning support. Expert Syst. Appl. 113708 (2020)

    Google Scholar 

  34. Qin, Y., Qi, Q., Scott, P.J., Jiang, X.: An additive manufacturing process selection approach based on fuzzy Archimedean weighted power Bonferroni aggregation operators. Robot. Comput. Integr. Manuf. 64, 101926 (2020)

    Article  Google Scholar 

  35. Chien, F., Wang, C.N., Nguyen, V.T., Nguyen, V.T., Chau, K.Y.: An evaluation model of quantitative and qualitative fuzzy multi-criteria decision-making approach for hydroelectric plant location selection. Energies 13(11), 2783 (2020)

    Article  Google Scholar 

  36. Li, J., Chen, Q.: An outranking method for multicriteria decision making with probabilistic hesitant information. Expert Syst. e12513 (2020)

    Google Scholar 

  37. Solangi, Y.A., Tan, Q., Mirjat, N.H., Ali, S.: Evaluating the strategies for sustainable energy planning in Pakistan: an integrated SWOT-AHP and Fuzzy-TOPSIS approach. J. Cleaner Product. 236, 117655 (2019)

    Article  Google Scholar 

  38. Sufiyan, M., Haleem, A., Khan, S., Khan, M.I.: Evaluating food supply chain performance using hybrid fuzzy MCDM technique. Sustain. Product. and Consump. 20, 40–57 (2019)

    Article  Google Scholar 

  39. Yager, R.: Pythagorean membership grades in multi criteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014)

    Article  Google Scholar 

  40. Karasan, A., Ilbahar, E., Kahraman, C.: A novel pythagorean fuzzy AHP and its application to landfill site selection problem. Soft. Comput. 23(21), 10953–10968 (2019)

    Article  Google Scholar 

  41. Ak, M.F., Gül, M.: AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis. Complex Intell. Syst. 113–126 (2018)

    Google Scholar 

  42. Gul, M., Ak, M.F., Guneri, A.F.: Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry. J. Saf. Res. 69, 135–153 (2019)

    Article  Google Scholar 

  43. Zhang, X., Xu, Z.: Extension of topsis to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intel. Syst. 1061–1078 (2014)

    Google Scholar 

  44. Zeng, S., Chen, J., Li, X.: A hybrid method for Pythagorean fuzzy multiple-criteria decision making. Int. J. Inf. Technol. Decis. Mak. 15(02), 403–422 (2016)

    Article  Google Scholar 

  45. Gul, M.: Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: the case of a gun and rifle barrel external surface oxidation and coloring unit. Int. J. Occup. Saf. Ergon. 1–15 (2018)

    Google Scholar 

  46. llbahar, E., Karaşan, A., Cebi, S., Kahraman, C.: A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf. Sci. 103, 124–136 (2018)

    Google Scholar 

  47. Yücesan, M., Kahraman, G.: Risk evaluation and prevention in hydropower plant operations: a model based on Pythagorean fuzzy AHP. Energy Policy 126, 343–351 (2019)

    Article  Google Scholar 

  48. Kaya, A., Çiçekalan, B., Çebi, F.: Location selection for WEEE recycling plant by using Pythagorean fuzzy AHP. J. Intell. Fuzzy Syst. 38(1), 1097–1106 (2020)

    Article  Google Scholar 

  49. Yildiz, A., Ayyildiz, E., Gumus, A.T., Ozkan, C.: A modified balanced scorecard based hybrid Pythagorean fuzzy AHP-Topsis methodology for ATM site selection problem. Int. J. Inf. Technol. Decis. Mak. (IJITDM) 19(02), 365–384 (2020)

    Article  Google Scholar 

  50. Shete, R.S.P.C., Ansari, Z.N., Kant, R.: A Pythagorean fuzzy AHP approach and its application to evaluate the enablers of sustainable supply chain innovation. Sustain. Product. Consump. (2020)

    Google Scholar 

  51. Rani, P., Mishra, A.R., Mardani, A., Cavallaro, F., Štreimikienė, D., Khan, S.A.R.: Pythagorean fuzzy SWARA–VIKOR framework for performance evaluation of solar panel selection. Sustainability 12(10), 4278 (2020)

    Article  Google Scholar 

  52. Tepe, S., Kaya, İ.: A fuzzy-based risk assessment model for evaluations of hazards with a real-case study. Hum. Ecol. Risk Assess. Int. J. (2019)

    Google Scholar 

  53. Seker, S.: A novel integrated MCDM approach: an application to selection of the optimal fiber optical access network strategy. J. Intell. Fuzzy Syst. (Preprint), 1–11 (2020)

    Google Scholar 

  54. Büyüközkan, G., Göçer, F.: Assessment of additive manufacturing technology by Pythagorean fuzzy CODAS. In International Conference on Intelligent and Fuzzy System, pp. 959–968. Springer, Cham (2019)

    Google Scholar 

  55. Seker, S., Aydin, N.: Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. Int. J. Hydrogen Energy (2020)

    Google Scholar 

  56. Rani, P., Mishra, A.R., Pardasani, K.R., Mardani, A., Liao, H., Streimikiene, D.: A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India. J. Cleaner Product. 238, 117936 (2019)

    Article  Google Scholar 

  57. Zhang, Z.X., Hao, W.N., Yu, X.H., Chen, G., Zhang, S.J., Chen, J.Y.: Pythagorean fuzzy preference ranking organization method of enrichment evaluations. Int. J. Intell. Syst. 34(7), 1416–1439 (2019)

    Article  Google Scholar 

  58. Ren, P., Xu, Z., Gou, X.: Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 42, 246–259 (2016)

    Article  Google Scholar 

  59. Herrera, F., Martinez, L., Rodríguez, R.M.: Hesitant fuzzy linguistic term sets Adv. Intel. Soft Comput. 122, 287–295 (2011)

    Google Scholar 

  60. Gou, X., Liao, H., Xu, Z., Herrera, F.: Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: a case of study to evaluate the implementation status of haze controlling measures. Inf. Fus. 38, 22–34 (2017)

    Article  Google Scholar 

  61. Rodriguez, R.M., Martinez, L., Herrera, F.: A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inf. Sci. 241, 28–42 (2013)

    Article  MathSciNet  Google Scholar 

  62. Zhang, Y., Xu, Z.: Efficiency evaluation of sustainable water management using the HF-TODIM method. Int. Trans. Oper. Res. 26(2), 747–764 (2019)

    Article  MathSciNet  Google Scholar 

  63. Liao, H., Wu, X., Mi, X., Herrera, F.: An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule. Omega (United Kingdom) 93, 102052 (2020)

    Google Scholar 

  64. Narayanamoorthy, S., Geetha, S., Rakkiyappan, R., Joo, Y.H.: Interval-valued intuitionistic hesitant fuzzy entropy based VIKOR method for industrial robots selection. Expert Syst. Appl. 121, 28–37 (2019)

    Article  Google Scholar 

  65. Xian, S., Guo, H.: Novel supplier grading approach based on interval probability hesitant fuzzy linguistic TOPSIS. Eng. Appl. Artif. Intell. 87, 103299 (2020)

    Article  Google Scholar 

  66. Beskese, A., Camci, A., Temur, G.T., Erturk, E.: Wind turbine evaluation using the hesitant fuzzy AHP-TOPSIS method with a case in Turkey. J. Intell. Fuzzy Syst. 38(1), 997–1011 (2020)

    Article  Google Scholar 

  67. Liang, R.-X., Wang, J.-Q., Zhang, H.-Y.: Projection-based PROMETHEE methods based on hesitant fuzzy linguistic term sets. Int. J. Fuzzy Syst. 20(7), 2161–2174 (2018)

    Article  Google Scholar 

  68. Liu, Z., Ming, X., Song, W.: A framework integrating interval-valued hesitant fuzzy DEMATEL method to capture and evaluate co-creative value propositions for smart PSS. J. Cleaner Product. 215, 611–625 (2019)

    Article  Google Scholar 

  69. Darko, A.P., Liang, D.: An extended COPRAS method for multiattribute group decision making based on dual hesitant fuzzy Maclaurin symmetric mean. Int. J. Intell. Syst. 35(6), 1021–1068 (2020)

    Article  Google Scholar 

  70. Wang, X., Gou, X., Xu, Z.: Assessment of traffic congestion with ORESTE method under double hierarchy hesitant fuzzy linguistic environment. Appl. Soft Comput. J. 86, 105864 (2020)

    Article  Google Scholar 

  71. Maiers, J., Sherif, Y.S.: Applications of fuzzy set theory. IEEE Trans. Syst. Man Cybern. 1, 175–189 (1985)

    Article  MathSciNet  Google Scholar 

  72. Rodriguez, R.M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012)

    Google Scholar 

  73. Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Adem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adem, A., Yilmaz Kaya, B., Dağdeviren, M. (2022). Technology Analysis for Logistics 4.0 Applications: Criteria Affecting UAV Performances. In: Kahraman, C., Aydın, S. (eds) Intelligent and Fuzzy Techniques in Aviation 4.0. Studies in Systems, Decision and Control, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-75067-1_21

Download citation

Publish with us

Policies and ethics