Skip to main content

The Stability Analysis of Stationary Modes of the Ice Surface Softening During the Friction Process

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications (NANO 2020)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 263))

Included in the following conference series:

  • 334 Accesses

Abstract

This paper investigates the melting process of the upper layer of ice, which acts as an ultra-thin layer of lubricant between two hard and smooth surfaces. Melting occurs due to the spontaneous occurrence of shear deformation by external supercritical heating. This process was described by the Kelvin-Voigt equation for a viscoelastic medium and the Landau-Khalatnikov relaxation equation for thermal conductivity. As a result, using the phase plane method, the kinetics of the ice melting process and the types of stability of possible stationary states of the system were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khomenko AV, Khomenko KP, Falko VV (2015) Nonlinear model of ice surface softening during friction. https://doi.org/10.5488/CMP.19.33002

  2. Persson BNJ (2000) Sliding friction. In: Physical principles andapplications. Springer, Berlin

    Google Scholar 

  3. Yushchenko OV, Badalyan AY (2017) J Nano Electron Phys 9(4):04022

    Article  Google Scholar 

  4. Pertsin A, Grunze M (2008) Langmuir 24:135

    Article  Google Scholar 

  5. Lee S, Iten R, Müller M, Spencer ND (2005) Macromolecules 37:8349

    Google Scholar 

  6. Yamada Sh (2005) Langmuir 21:8724

    Article  Google Scholar 

  7. Wiese K, Kessel TM, Mundl R, Wies B (2012) Tire. Sci Technol 40(2):124

    Google Scholar 

  8. Kietzig AM, Hatzikiriakos SG, Englezos P (2010) J Appl Phys 107(8):081101

    Google Scholar 

  9. Kennedy FE, Schulson EM, Jones DE (2000) Philos Mag A 80(5):1093

    Article  ADS  Google Scholar 

  10. Khomenko AV, Lyashenko IA (2007) Phys Solid State 49(5):936

    Article  ADS  Google Scholar 

  11. Khomenko AV, Yushchenko OV (2003) Phys Rev E 68:036110

    Google Scholar 

  12. Lifshits EM, Pitaevskii LP (1981) Course of theoretical physics, physical kinetics, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  13. Khomenko AV (2004) Phys Lett A 329(1–2):140

    Article  ADS  Google Scholar 

  14. Khomenko AV, Lyashenko IA (2007) Tech Phys 52(9):1239

    Article  Google Scholar 

  15. Limmer DT, Chandler D (2014) J Chem Phys 141(18):505

    Article  Google Scholar 

  16. Colbeck SC (1988) J Glaciol 34(116):78

    Article  Google Scholar 

  17. Akkok M, Ettles CM, Calabrese SJ (1987) J Tribol 109:552

    Article  Google Scholar 

  18. Olemskoi AI, Yushchenko OV, Badalyan AY (2013) Theor Math Phys 174(3):386

    Article  Google Scholar 

  19. Yushchenko OV, Badalyan AY (2013) Ukr J Phys 58(5):497

    Article  Google Scholar 

  20. Khomenko AV (2014) Condens Matter Phys 17(3):33401

    Article  Google Scholar 

  21. Haken H (1983) Synergetics. In: An introduction. nonequilibrium phase transitions and selforganization in physics, Chemistry, and Biology, 3rd edn. Springer, Berlin

    Google Scholar 

  22. Khomenko AV, Khomenko KP, Falko VV (2016) Condens Matter Phys 19(3)

    Google Scholar 

  23. Khomenko A, Yushchenko O, Badalyan A (2020) Symmetry 12(11):1914

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Badalian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yushchenko, O.V., Badalian, A.Y., Khomenko, O.V. (2021). The Stability Analysis of Stationary Modes of the Ice Surface Softening During the Friction Process. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . NANO 2020. Springer Proceedings in Physics, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-74741-1_23

Download citation

Publish with us

Policies and ethics