Skip to main content

Revealing the Blackmarket Retweet Game: A Hybrid Approach

  • Conference paper
  • First Online:
Combating Online Hostile Posts in Regional Languages during Emergency Situation (CONSTRAINT 2021)

Abstract

The advent of online social networks has led to a significant spread of important news and opinions. In the case of Twitter, the popularity of a tweet is measured by the number of retweets it gains. A significant number of retweets help to broadcast a tweet well and makes the topic of the tweet popular. Individuals and organizations involved in product launches, promotional events, etc. look for a broader reach in their audience and approach blackmarket services. These services artificially provide a gain in retweets of a tweet as the retweets’ natural increase is difficult and time-consuming. We refer to such tweets as collusive tweets. Users who submit their tweets to the blackmarket services gain artificial boosting to their social growth and appear credible to the end-users, leading to false promotions and campaigns. Existing methods are mostly centered around the problem of detection of fake, fraudulent, and spam activities. Thus, detecting collusive tweets is an important yet challenging problem that is not yet well understood.

In this paper, we propose a model that takes into account the textual, retweeters-centric, and source-user-centric characteristics of a tweet for an accurate and automatic prediction of tweets submitted to blackmarket services. By conducting extensive experiments on collusive tweets’ real-world data, we show how our model detects tweets submitted to blackmarket services for collusive retweet appraisals. Moreover, we extract a meaningful latent representation of collusive tweets and their corresponding users (source users and retweeters), leading to some exciting discoveries in practice. In addition to identifying collusive tweets, we also analyze different types of collusive tweets to evaluate the impact of various factors that lead to a tweet getting submitted to blackmarket services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The data is manually verified and validated by three experts in the domain.

  2. 2.

    https://github.com/shrebox/Parallel-Tweepy.

  3. 3.

    Indicators are parameterized at best values found after experimentation.

  4. 4.

    A decision threshold of 0.5 on the regressed \(\text {R}^{2}\) score from linear regression is used for predicting the labels (0 or 1).

  5. 5.

    SVM is shown due to comparable accuracies with other classifiers; MLP performs the best, but due to underlying neural network-based architecture, it does not have intrinsic feature importances rather complex network weights.

  6. 6.

    https://botometer.osome.iu.edu/.

  7. 7.

    https://networkx.github.io/documentation/stable/reference/algorithms/core.html.

References

  1. Arya, S.: The influence of social networks on human society (2020). https://doi.org/10.13140/RG.2.2.18060.54408/1

  2. Ross, B., et al.: Are social bots a real threat? An agent-based model of the spiral of silence to analyse the impact of manipulative actors in social networks. Eur. J. Inf. Syst. 28, 394–412 (2019)

    Article  Google Scholar 

  3. Stieglitz, S., Brachten, F., Ross, B., Jung, A.K.: Do social bots dream of electric sheep? A categorisation of social media bot accounts (2017)

    Google Scholar 

  4. Ross, B., et al.: Social bots in a commercial context – a case study on SoundCloud. In: Proceedings of the 26th European Conference on Information Systems (ECIS2018) (2018)

    Google Scholar 

  5. Bruns, A., et al.: Detecting Twitter bots that share SoundCloud tracks. In: Proceedings of the 9th International Conference on Social Media and Society (SMSociety 2018), pp. 251–255. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3217804.3217923

  6. Sharma, A., Arya, S., Kumari, S., Chatterjee, A.: Effect of lockdown interventions to control the COVID-19 epidemic in India. arXiv:2009.03168 (2020)

  7. Guille, A., Favre, C.: Mention-anomaly-based event detection and tracking in Twitter. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), Beijing, pp. 375–382 (2014). https://doi.org/10.1109/ASONAM.2014.6921613

  8. Liu, Z., Huang, Y., Trampier, J.R.: Spatiotemporal topic association detection on tweets. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPACIAL 2016), pp. 1–10. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2996913.2996933. Article 28

  9. Fani, H., Zarrinkalam, F., Bagheri, E., Du, W.: Time-sensitive topic-based communities on Twitter. In: Khoury, R., Drummond, C. (eds.) AI 2016. LNCS (LNAI), vol. 9673, pp. 192–204. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34111-8_25

    Chapter  Google Scholar 

  10. Mukherjee, A., Liu, B., Wang, J., Glance, N., Jindal, N.: Detecting group review spam. In: Proceedings of the 20th International Conference Companion on World Wide Web (WWW 2011), pp. 93–94. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/1963192.1963240

  11. Dutta, H.S., Chakraborty, T.: Blackmarket-driven collusion on online media: a survey (2020)

    Google Scholar 

  12. Dutta, H.S., Chetan, A., Joshi, B., Chakraborty, T.: Retweet us. Spotting collusive retweeters involved in blackmarket services, we will retweet you (2018)

    Google Scholar 

  13. Chetan, A., Joshi, B., Dutta, H.S., Chakraborty, T.: CoReRank: ranking to detect users involved in blackmarket-based collusive retweeting activities. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 330–338 (2019)

    Google Scholar 

  14. Dutta, H.S., Chakraborty, T.: Blackmarket-driven collusion among retweeters-analysis, detection and characterization. IEEE Trans. Inf. Forensics Secur. 15, 1935–1944 (2019)

    Article  Google Scholar 

  15. Dutta, H.S., Chetan, A., Joshi, B., Chakraborty, T.: Retweet us, we will retweet you: spotting collusive retweeters involved in blackmarket services. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 242–249 (2018)

    Google Scholar 

  16. Dutta, H.S., Dutta, V.R., Adhikary, A., Chakraborty, T.: HawkesEye: detecting fake retweeters using Hawkes process and topic modeling. IEEE Trans. Inf. Forensics Secur. 15, 2667–2678 (2020)

    Article  Google Scholar 

  17. Dutta, H.S., Jobanputra, M., Negi, H., Chakraborty, T.: Detecting and analyzing collusive entities on YouTube. arXiv preprint arXiv:2005.06243 (2020)

  18. Arora, U., Dutta, H.S., Joshi, B., Chetan, A., Chakraborty, T.: Analyzing and detecting collusive users involved in blackmarket retweeting activities. ACM Trans. Intell. Syst. Technol. 11(3), 1–24 (2020). Article 35

    Article  Google Scholar 

  19. Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.W.: Tweet2Vec: character-based distributed representations for social media. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (2016)

    Google Scholar 

  20. Ruchansky, N., Seo, S. Liu, Y.: CSI: a hybrid deep model for fake news detection, pp. 797–806. (2017)https://doi.org/10.1145/3132847.3132877

  21. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, pp. 11–15 (2008)

    Google Scholar 

  22. Yang, K.-C., Varol, O., Davis, C., Ferrara, E., Flammini, A., Menczer, F.: Arming the public with artificial intelligence to counter social bots. Hum. Behav. Emerg. Technol. 1, 48–61 (2019). https://doi.org/10.1002/hbe2.115

    Article  Google Scholar 

  23. Shah, N., Lamba, H., Beutel, A., Faloutsos, C.: The many faces of link fraud. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 1069–1074 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyash Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arya, S., Dutta, H.S. (2021). Revealing the Blackmarket Retweet Game: A Hybrid Approach. In: Chakraborty, T., Shu, K., Bernard, H.R., Liu, H., Akhtar, M.S. (eds) Combating Online Hostile Posts in Regional Languages during Emergency Situation. CONSTRAINT 2021. Communications in Computer and Information Science, vol 1402. Springer, Cham. https://doi.org/10.1007/978-3-030-73696-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73696-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73695-8

  • Online ISBN: 978-3-030-73696-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics