Skip to main content

Three-Dimensional and Lamellar Graphene Oxide Membranes for Water Purification

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Graphene oxide (GO) is one of the most prominent nanoscaled membranes for water purification. Thanks to a combination of massive theoretical and experimental efforts, large-scale production of both three-dimensional (3D) and lamellar GO membranes is at hand. Countless methods to synthesize, functionalize, and characterize GO membranes are available, which inspire tremendous excitement about the possibilities of increasing the efficiency of current reverse osmosis (RO) desalination plants. Here, we reveal some of the main physical–chemical insights as well as manufacturing techniques of GO, reduced GO, and related material-based separation techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Future Readings

  1. WWAP and UNESCO (2019) The United Nations world water development report 2019: leaving no one behind, United Nations Educational, Scientific and Cultural Organization

    Google Scholar 

  2. Eliasson J (2015) The rising pressure of global water shortages. Nature 517:6

    Article  CAS  PubMed  Google Scholar 

  3. WWAP and UNESCO (2017) The United Nations world water development report, 2017: Wastewater: an untapped resource; executive summary, United Nations Educational, Scientific and Cultural Organization

    Google Scholar 

  4. Ali I, Alharbi OML, Tkachev A, Galunin E, Burakov A, Grachev VA (2018) Water treatment by new-generation graphene materials: hope for bright future. Environ Sci Pollut Res 25:7315–7329

    Google Scholar 

  5. Köhler MH, Bordin JR, de Matos CF, Barbosa MC (2019) Water in nanotubes: the surface effect. Chem Eng Sci 203:54–67

    Article  CAS  Google Scholar 

  6. Radushkevich LE (1952) The carbon structure formed by the thermic decomposition of carbon monoxide in iron VK. Sov J Phys Chemis 26:88

    CAS  Google Scholar 

  7. Oberlinv A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Grow 32:335

    Article  Google Scholar 

  8. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  9. Umemoto K, Saito S, Berber S, Tománek D (2001) Carbon foam: spanning the phase space between graphite and diamond. Phys Rev B 64:

    Article  CAS  Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  11. Gaim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  12. United Nations (2015) Mine tailings storage: Safety is no accident, Report summary

    Google Scholar 

  13. Bradl H (2005) Heavy metals in the environment: origin, interaction and remediation. Elsevier

    Google Scholar 

  14. Smith AT, LaChance AM, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Scie 1:31–47

    Article  Google Scholar 

  15. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  PubMed  Google Scholar 

  16. Xi Y-H, Hu J-Q, Liu Z, Xie R, Ju X-J, Wang W, Chu L-Y (2016) Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing. ACS Appl Mater Interfaces 8:15557–15566

    Article  CAS  PubMed  Google Scholar 

  17. Zhao S, Zhu H, Wang H, Rassu P, Wang Z, Song P, Rao D (2019) Free-standing graphene oxide membrane with tunable channels for efficient water pollution control. J Hazard Mater 366:659–668

    Article  CAS  PubMed  Google Scholar 

  18. Hegab HM, Zou L (2015) Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J Membr Sci 484:95–106

    Article  CAS  Google Scholar 

  19. Wei Y, Zhang Y, Gao X, Ma Z, Wang X, Gao C (2018) Multilayered graphene oxide membranes for water treatment: a review. Carbon 139:964–981

    Article  CAS  Google Scholar 

  20. Hiew BYZ, Lee LY, Lee XJ, Thangalazhy-Gopakumar S, Gan S, Lim SS, Pan G-T, Yang TC-K, Chiu WS, Khiew PS (2018) Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. Process Saf Environ Prot 116:262–286

    Article  CAS  Google Scholar 

  21. Liu H, Qiu H (2020) Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: a review. Chem Eng J 393:

    Article  CAS  Google Scholar 

  22. Li Y, Xu L, Liu H, Li Y (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43:2572–2586

    Article  CAS  PubMed  Google Scholar 

  23. Baughman RH, Eckhardt H, Kertesz M (1987) Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87:6687–6699

    Article  CAS  Google Scholar 

  24. Kang J, Wei Z, Li J (2019) Graphyne and its family: recent theoretical advances. ACS Appl Mater Interfaces 11:2692–2706

    Article  CAS  PubMed  Google Scholar 

  25. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258

    Article  CAS  Google Scholar 

  26. Li J, Chen Y, Gao J, Zuo Z, Li Y, Liu H, Li Y (2019) Graphdiyne sponge for direct collection of oils from water. ACS Appl Mater Interfaces 11:2591–2598

    Article  CAS  PubMed  Google Scholar 

  27. Wang F, Zuo Z, Shang H, Zhao Y, Li Y (2019) Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode. ACS Appl Mater Interfaces 11:2599–2607

    Article  CAS  PubMed  Google Scholar 

  28. Singh RK, Kumar R, Singh DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6:64993–65011

    Article  CAS  Google Scholar 

  29. Shamaila S, Sajjad AKL, Iqbal A (2016) Modifications in development of graphene oxide synthetic routes. Chem Eng J 294:458–477

    Article  CAS  Google Scholar 

  30. Pei S, Wei Q, Huang K, Cheng H-M, Ren W (2018) Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat Commun 9:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lyu J, Wen X, Kumar U, You Y, Chen V, Joshi RK (2018) Separation and Purification Using GO and r-GO Membranes. RSC Adv 8:23130–23151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242

    Article  CAS  Google Scholar 

  33. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472

    Article  CAS  PubMed  Google Scholar 

  34. Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41

    Article  CAS  PubMed  Google Scholar 

  35. Yousefi N, Lu X, Elimelech M, Tufenkji N (2019) Environmental performance of graphene-based 3D macrostructures. Nat Nanotech 14:107–119

    Article  CAS  Google Scholar 

  36. Zhu Y, Ji H, Cheng H-M, Ruoff RS (2017) Mass production and industrial applications of graphene materials. Natl Sci Rev 5:90–101

    Article  CAS  Google Scholar 

  37. Sun M, Li J (2018) Graphene oxide membranes: functional structures, preparation and environmental applications. Nano Today 20:121–137

    Article  CAS  Google Scholar 

  38. Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn HJ, Bao Y, Yu M (2013) Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98

    Article  CAS  PubMed  Google Scholar 

  39. Tsou C-H, An Q-F, Lo S-C, Guzman MD, Hung W-S, Hu C-C, Lee K-R, Lai J-Y (2015) Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J Membr Sci 477:93–100

    Google Scholar 

  40. Liu G, Jin W (2019) Chapter 2: Graphene-based membranes. In: Graphene-based membranes for mass transport applications. The Royal Society of Chemistry, pp 14–42

    Google Scholar 

  41. Guan K, Zhao D, Zhang M, Shen J, Zhou G, Liu G, Jin W (2017) 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. J Membr Sci 542:41–51

    Article  CAS  Google Scholar 

  42. Hu M, Mi B (2014) Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J Membr Sci 469:80–87

    Article  CAS  Google Scholar 

  43. Zhu H, Sun P (eds) (2019) Graphene-based membranes for mass transport applications. The Royal Society of Chemistry

    Google Scholar 

  44. Thebo KH, Qian X, Zhang Q, Chen L, Cheng H-M, Ren W (2018) Highly stable graphene-oxide-based membranes with superior permeability. Nat Commun 9:1486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yu H, He Y, Xiao G, Fan Y, Ma J, Gao Y, Hou R, Yin X, Wang Y, Mei X (2020) The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane. Chem Eng J 389:

    Article  CAS  Google Scholar 

  46. Yang E, Ham M-H, Park HB, Kim C-M, Song J, Kim IS (2018) Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. J Membr Sci 547:73–79

    Google Scholar 

  47. Kumar S, Garg A, Chowdhuri A (2019) Sonication effect on graphene oxide (GO) membranes for water purification applications. Mater Res Express 6:085620

    Google Scholar 

  48. Buelke C, Alshami A, Casler J, Lin Y, Hickner M, Aljundi IH (2019) Evaluating graphene oxide and holey graphene oxide membrane performance for water purification. J Membr Sci 588:

    Article  CAS  Google Scholar 

  49. Dong L, Fan W, Tong X, Zhang H, Chen M, Zhao Y (2018) A CO2-responsive graphene oxide/polymer composite nanofiltration membrane for water purification. J Mater Chem A 6:6785–6791

    Article  CAS  Google Scholar 

  50. Kim C-M, Hong S, Li R, Kim IS, Wang P (2019) Janus graphene oxide-doped, lamellar composite membranes with strong aqueous stability. ACS Sustain Chem Eng 7:7252–7259

    Article  CAS  Google Scholar 

  51. Ran J, Pan T, Wu Y, Chu C, Cui P, Zhang P, Ai X, Fu C-F, Yang Z, Xu T (2019) Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angew Chem Int Ed 58:16463–16468

    Article  CAS  Google Scholar 

  52. Wu Z, Gao L, Wang J, Zhao F, Fan L, Hua D, Japip S, Xiao J, Zhang X, Zhou S-F, Zhan G (2020) Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration. J Membr Sci 601:

    Article  CAS  Google Scholar 

  53. Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H (2017) A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed 56:1825–1829

    Article  CAS  Google Scholar 

  54. Wei S, Xie Y, Xing Y, Wang L, Ye H, Xiong X, Wang S, Han K (2019) Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J Membr Sci 582:414–422

    Article  CAS  Google Scholar 

  55. Liu T, Liu X, Graham N, Yu W, Sun K (2020) Two-dimensional Mxene incorporated graphene oxide composite membrane with enhanced water purification performance. J Membr Sci 593:

    Article  CAS  Google Scholar 

  56. Nardecchia S, Carriazo D, Ferrer ML, Gutiérrez MC, del Monte F (2013) Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev 42:794–830

    Article  CAS  PubMed  Google Scholar 

  57. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Lai D, Yuan B, Fu M-L (2019) Tuning oxygen clusters on graphene oxide to synthesize graphene aerogels with crumpled nanosheets for effective removal of organic pollutants. Carbon 143:897–907

    Article  CAS  Google Scholar 

  59. Liu Y, Bai J, Yao H, Li G, Zhang T, Li S, Zhang L, Si J, Zhou R, Zhang H (2020) Embryotoxicity assessment and efficient removal of naphthalene from water by irradiated graphene aerogels. Ecotoxicol Environ Saf 189:

    Article  CAS  PubMed  Google Scholar 

  60. Ji C, Xu M, Bao S, Cai C, Lu Z, Chai H, Yang F, Wei H (2013) Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors. J Colloid Interface Sci 407:416–424

    Article  CAS  PubMed  Google Scholar 

  61. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interf 5:425–432

    Article  CAS  Google Scholar 

  62. Xu J, Du P, Bi W, Yao G, Li S, Liu H (2020) Graphene oxide aerogels co-functionalized with polydopamine and polyethylenimine for the adsorption of anionic dyes and organic solvents. Chem Eng Res Des 154:192–202

    Article  CAS  Google Scholar 

  63. Cheng Y, Barras A, Lu S, Xu W, Szunerits S, Boukherroub R (2020) Fabrication of superhydrophobic/superoleophilic functionalized reduced graphene oxide/polydopamine/PFDT membrane for efficient oil/water separation. Sep Purif Technol 236:116240

    Google Scholar 

  64. Yu H, Hong H-J, Kim SM, Ko HC, Jeong HS (2020) Mechanically enhanced graphene oxide/carboxymethyl cellulose nanofibril composite fiber as a scalable adsorbent for heavy metal removal. Carbohydrate Polym 240:116348

    Google Scholar 

  65. Mensah A, Lv P, Narh C, Huang J, Wang D, Wei Q (2019) Sequestration of Pb(II) ions from aqueous systems with novel green bacterial cellulose graphene oxide composite. Materials 12:218

    Article  CAS  PubMed Central  Google Scholar 

  66. Zhang S, Liu G, Gao Y, Yue Q, Gao B, Xu X, Kong W, Li N, Jiang W (2019) A facile approach to ultralight and recyclable 3D self-assembled copolymer/graphene aerogels for efficient oil/water separation. Sci Total Environ 694:

    Article  CAS  PubMed  Google Scholar 

  67. Luo H, Xie J, Wang J, Yao F, Yang Z, Wan Y (2018) Step-by-step self-assembly of 2D few-layer reduced graphene oxide into 3D architecture of bacterial cellulose for a robust, ultralight, and recyclable all-carbon absorbent. Carbon 139:824–832

    Article  CAS  Google Scholar 

  68. Xiao J, Lv W, Song Y, Zheng Q (2018) Graphene/nanofiber aerogels: performance regulation towards multiple applications in dye adsorption and oil/water separation. Chem Eng J 338:202–210

    Article  CAS  Google Scholar 

  69. Xiao J, Lv W, Xie Z, Song Y, Zheng Q (2017) l-cysteine-reduced graphene oxide/poly (vinyl alcohol) ultralight aerogel as a broad-spectrum adsorbent for anionic and cationic dyes. J Mater Sci 52:5807–5821

    Article  CAS  Google Scholar 

  70. Hu J, Zhu J, Ge S, Jiang C, Guo T, Peng T, Huang T, Xie L (2020) Bio-compatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil–water separation. Surf Coat Technol 385:

    Article  CAS  Google Scholar 

  71. Luo J, Fan C, Xiao Z, Sun T, Zhou X (2019) Novel graphene oxide/carboxymethyl chitosan aerogels via vacuum-assisted self-assembly for heavy metal adsorption capacity. Colloids Surf A Physicochem Eng Asp 578:123584

    Article  CAS  Google Scholar 

  72. Huang T, Shao Y-W, Zhang Q, Deng Y-F, Liang Z-X, Guo F-Z, Li P-C, Wang Y (2019) Chitosan-cross-linked graphene oxide/carboxymethyl cellulose aerogel globules with high structure stability in liquid and extremely high adsorption ability. ACS Sustain Chem Eng 7:8775–8788

    Article  CAS  Google Scholar 

  73. Zhao L, Yang S, Yilihamu A, Ma Q, Shi M, Ouyang B, Zhang Q, Guan X, Yang S-T (2019) Adsorptive decontamination of Cu2+-contaminated water and soil by carboxylated graphene oxide/chitosan/cellulose composite beads. Environ Res 179:108779

    Article  CAS  PubMed  Google Scholar 

  74. Zhao L, Guan X, Yu B, Ding N, Liu X, Ma Q, Yang S, Yilihamu A, Yang S-T (2019) Carboxylated graphene oxide-chitosan spheres immobilize Cu2+ in soil and reduce its bioaccumulation in wheat plants. Environ Int 133:105208

    Article  CAS  PubMed  Google Scholar 

  75. Delhiraja K, Vellingiri K, Boukhvalov DW, Philip L (2019) Development of highly water stable graphene oxide-based composites for the removal of pharmaceuticals and personal care products. Ind Eng Chem Res 58:2899–2913

    Article  CAS  Google Scholar 

  76. Wang S, Ning H, Hu N, Huang K, Weng S, Wu X, Wu L, Liu J, Alamusi (2019) Preparation and characterization of graphene oxide/silk fibroin hybrid aerogel for dye and heavy metal adsorption. Compos Part B: Eng 163:716–722

    Google Scholar 

  77. Lin Y-Z, Zhong L-B, Dou S, Shao Z-D, Liu Q, Zheng Y-M (2019) Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environ Int 128:37–45

    Article  CAS  PubMed  Google Scholar 

  78. Zhou F, Feng X, Yu J, Jiang X (2018) High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd (II) and Pb (II). Environ Sci Pollut Res 25:15651–15661

    Article  CAS  Google Scholar 

  79. Xiao D, He M, Liu Y, Xiong L, Zhang Q, Wei L, Li L, Yu X (2020) Strong alginate/reduced grapheme oxide composite hydrogels with enhanced dye adsorption performance. Polym Bull 77:6609–6623

    Google Scholar 

  80. Liu S, Bastola AK, Li L (2017) A 3D printable and mechanically robust hydrogel based on alginate and graphene oxide. ACS Appl Mater Interf 9(47):41473–41481

    Article  CAS  Google Scholar 

  81. Wei X-N, Ou C-L, Fang S-S, Zheng X-C, Zheng G-P, Guan X-X (2019) One-pot self-assembly of 3D CdS-graphene aerogels with superior adsorption capacity and photocatalytic activity for water purification. Powder Technol 345:213–222

    Article  CAS  Google Scholar 

  82. Neskoromnaya EA, Burakov AE, Babkin AV, Burakova IV, Melezhik AV, Mkrtchyan ES (2020) Development of sorption materials based on iron(III)-chloride-modified graphene oxide for selective removal of organic pollutants from aquatic media. Fullerenes Nanotubes Carbon Nanostruct 28:521–525

    Article  CAS  Google Scholar 

  83. Wang J, Duan X, Dong Q, Meng F, Tan X, Liu S, Wang S (2019) Facile synthesis of N-doped 3D graphene aerogel and its excellent performance in catalytic degradation of antibiotic contaminants in water. Carbon 144:781–790

    Article  CAS  Google Scholar 

  84. Liu Y, Yang D, Shi Y, Song L, Yu R, Qu J, Yu Z-Z (2019) Silver phosphate/graphene oxide aerogel microspheres with radially oriented microchannels for highly efficient and continuous removal of pollutants from wastewaters. ACS Sustainable Chem Eng 7:11228–11240

    Article  CAS  Google Scholar 

  85. Pan L, Liu S, Oderinde O, Li K, Yao F, Fu G (2018) Facile fabrication of graphene-based aerogel with rare earth metal oxide for water purification. Appl Surf Sci 427:779–786

    Article  CAS  Google Scholar 

  86. Zhang Y, Li K, Liao J (2020) Facile synthesis of reduced-graphene-oxide/rare-earth-metal-oxide aerogels as a highly efficient adsorbent for Rhodamine-B. Appl Surf Sci 504:144377

    Article  CAS  Google Scholar 

  87. Zhuang Y, Wang X, Zhang L, Dionysiou DD, Shi B (2019) Fe-chelated polymer templated graphene aerogel with enhanced Fenton-like efficiency for water treatment. Environ Sci Nano 6:3232–3241

    Google Scholar 

  88. Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Ranjbari S, Rezapour M, Orooji Y (2020) The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq 298:112040

    Article  CAS  Google Scholar 

  89. Neolaka YA, Lawa Y, Naat JN, Riwu AA, Iqbal M, Darmokoesoemo H, Kusuma HS (2020) The adsorption of Cr(VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. J Mater Res Technol 9:6544–6556

    Article  CAS  Google Scholar 

  90. Li N, Chen J, Shi Y-P (2019) Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic sorbent for the separation of polar non-steroidal anti-inflammatory drugs in waters. Talanta 191:526–534

    Article  CAS  PubMed  Google Scholar 

  91. Tran TV, Nguyen DTC, Le HT, Vo D-VN, Nanda S, Nguyen TD (2020) Optimization, equilibrium, adsorption behavior and role of surface functional groups on graphene oxide-based nanocomposite towards diclofenac drug. J Environ Sci 93:137–150

    Article  Google Scholar 

  92. Ritz B, Zhao Y, Krishnadasan A, Kennedy N, Morgenstern H (2006) Estimated effects of hydrazine exposure on cancer incidence and mortality in aerospace workers. Epidemiology 2006:154–161

    Article  Google Scholar 

  93. Aigner BA, Darsow U, Grosber M, Ring J, Plötz SG (2010) Multiple basal cell carcinomas after long-term exposure to hydrazine: case report and review of the literature. Dermatology 221:300–302

    Article  CAS  PubMed  Google Scholar 

  94. Xu X, Pereira LFC, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui CT, Xie R, Thong BH, Loh KP, Donadio D, Li B, Özyilmaz B (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689

    Google Scholar 

  95. Crook C, Bauer J, Izard AG, de Oliveira CS, de Souza e Silva JM, Berger JB, Valdevit L (2020) Plate-nanolattices at the theoretical limit of stiffness and strength. Nat Commun 11:1579

    Google Scholar 

  96. Perilla JR, Schulten K (2017) Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8:15959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation Reactive Empirical Bond Order (REBO) potential energy expression for hydrocarbons. J Phys: Condens Matter 14:783–802

    CAS  Google Scholar 

  98. Yeo J, Jung GS, Martı́n-Martı́nez FJ, Beem J, Qin Z, Buehler MJ (2019) Multiscale design of graphyne-based materials for high-performance separation membranes. Adv Mater 31:1805665

    Google Scholar 

  99. Srinivasan SG, van Duin ACT, Ganesh P (2015) Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene. J Phys Chem A 119:571–580

    Article  CAS  PubMed  Google Scholar 

  100. Lee J-U, Yoon D, Cheong H (2012) Estimation of young’s modulus of graphene by Raman spectroscopy. Nano Lett 12:4444–4448

    Article  CAS  PubMed  Google Scholar 

  101. Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J Phys Chem C 111:18099–18111

    Article  CAS  Google Scholar 

  102. Gómez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U (2010) Atomic structure of reduced graphene oxide. Nano Lett 10:1144–1148

    Article  PubMed  CAS  Google Scholar 

  103. Suk ME, Aluru NR (2010) Water transport through ultrathin graphene. J Phys Chem Lett 1:1590–1594

    Article  CAS  Google Scholar 

  104. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Article  CAS  PubMed  Google Scholar 

  105. Cho KM, Lee H-J, Nam YT, Kim Y-J, Kim C, Kang KM, Ruiz Torres CA, Kim DW, Jung H-T (2019) Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/Graphene oxide nanoribbons. ACS Appl Mater Interf 11:27004–27010

    Article  CAS  Google Scholar 

  106. Wei N, Peng X, Xu Z (2014) Understanding water permeation in graphene oxide membranes. ACS Appl Mater Interf 6:5877–5883

    Article  CAS  Google Scholar 

  107. Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L (2010) Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett 10:4067–4073

    Article  CAS  PubMed  Google Scholar 

  108. Chen B, Jiang H, Liu X, Hu X (2017) Molecular insight into water desalination across multilayer graphene oxide membranes. ACS Appl Mater Interfaces 9:22826–22836

    Article  CAS  PubMed  Google Scholar 

  109. Qiu H, Xue M, Shen C, Zhang Z, Guo W (2019) Graphynes for water desalination and gas separation. Adv Mater 31:1803772

    Article  CAS  Google Scholar 

  110. Köhler MH, Bordin JR, Barbosa MC (2019) Ion flocculation in water: from bulk to nanoporous membrane desalination. J Mol Liq 277:516–521

    Article  CAS  Google Scholar 

  111. Kou J, Zhou X, Chen Y, Lu H, Wu F, Fan J (2013) Water permeation through single-layer graphyne membrane. J Chem Phys 139:064705

    Article  PubMed  CAS  Google Scholar 

  112. Lin S, Buehler MJ (2013) Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Nanoscale 5:11801–11807

    Article  CAS  PubMed  Google Scholar 

  113. Xue M, Qiu H, Guo W (2013) Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 24:505720

    Article  PubMed  CAS  Google Scholar 

  114. Zhu C, Li H, Zeng XC, Wang EG, Meng S (2013) Quantized water transport: ideal desalination through graphyne-4 membrane. Sci Rep 3:3163

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li J, Xie Z, Xiong Y, Li Z, Huang Q, Zhang S, Zhou J, Liu R, Gao X, Chen C, Tong L, Zhang J, Liu Z (2017) Architecture of β-graphdiyne-containing thin film using modified glaser-hay coupling reaction for enhanced photocatalytic property of TiO2. Adv Mater 29:1700421

    Article  CAS  Google Scholar 

  116. Morelos-Gomez A, Cruz-Silva R, Muramatsu H, Ortiz-Medina J, Araki T, Fukuyo T, Tejima S, Takeuchi K, Hayashi T, Terrones M, Endo M (2017) Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat Nanotechnol 12:1083–1088

    Article  CAS  PubMed  Google Scholar 

  117. Motevalli B, Sun B, Barnard AS (2020) Understanding and predicting the cause of defects in graphene oxide nanostructures using machine learning. J Phys Chem C 124:7404–7413

    Article  CAS  Google Scholar 

  118. Wan J, Jiang J-W, Park HS (2020) Machine learning-based design of porous graphene with low thermal conductivity. Carbon 157:262–269

    Article  CAS  Google Scholar 

  119. Noh J, Gu GH, Kim S, Jung Y (2020) Machine-enabled inverse design of inorganic solid materials: promises and challenges. Chem Sci 11:4871–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus H. Köhler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köhler, M.H., Leão, M.B., Bordin, J.R., de Matos, C.F. (2021). Three-Dimensional and Lamellar Graphene Oxide Membranes for Water Purification. In: Das, R. (eds) Two-Dimensional (2D) Nanomaterials in Separation Science. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-72457-3_4

Download citation

Publish with us

Policies and ethics