Skip to main content

SAMO-COBRA: A Fast Surrogate Assisted Constrained Multi-objective Optimization Algorithm

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2021)

Abstract

This paper proposes a novel Self-Adaptive algorithm for Multi-Objective Constrained Optimization by using Radial Basis Function Approximations, SAMO-COBRA. The algorithm automatically determines the best Radial Basis Function-fit as surrogates for the objectives as well as the constraints, to find new feasible Pareto-optimal solutions. The algorithm also uses hyper-parameter tuning on the fly to improve its local search strategy. In every iteration one solution is added and evaluated, resulting in a strategy requiring only a small number of function evaluations for finding a set of feasible solutions on the Pareto frontier. The proposed algorithm is compared to a wide set of other state-of-the-art algorithms (NSGA-II, NSGA-III, CEGO, SMES-RBF) on 18 constrained multi-objective problems. In the experiments we show that our algorithm outperforms the other algorithms in terms of achieved Hypervolume after given a fixed small evaluation budget. These results suggest that SAMO-COBRA is a good choice for optimizing constrained multi-objective optimization problems with expensive function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagheri, S., Konen, W., Bäck, T.: Online selection of surrogate models for constrained black-box optimization. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)

    Google Scholar 

  2. Bagheri, S., Konen, W., Bäck, T.: Comparing kriging and radial basis function surrogates. In: Proceedings 27 Workshop Computational Intelligence, pp. 243–259 (2017)

    Google Scholar 

  3. Bagheri, S., Konen, W., Emmerich, M., Bäck, T.: Self-adjusting parameter control for surrogate-assisted constrained optimization under limited budgets. Appl. Soft Comput. 61, 377–393 (2017). https://doi.org/10.1016/j.asoc.2017.07.060

    Article  Google Scholar 

  4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007). https://doi.org/10.1016/j.ejor.2006.08.008

    Article  MATH  Google Scholar 

  5. van der Blom, K., et al.: Towards realistic optimization benchmarks: a questionnaire on the properties of real-world problems. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. GECCO 2020, New York, NY, USA, pp. 293–294. Association for Computing Machinery (2020)

    Google Scholar 

  6. Bossek, J., Doerr, C., Kerschke, P.: Initial design strategies and their effects on sequential model-based optimization. arXiv preprint arXiv:2003.13826 (2020)

  7. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary Algorithms for Solving Multi-objective Problems. Genetic and Evolutionary Computation Series. GEVO, vol. 5. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-36797-2

    Chapter  MATH  Google Scholar 

  8. Datta, R., Regis, R.G.: A surrogate-assisted evolution strategy for constrained multi-objective optimization. Expert Syst. Appl. 57, 270–284 (2016). https://doi.org/10.1016/j.eswa.2016.03.044

    Article  Google Scholar 

  9. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  11. Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-objective evolutionary optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 284–298. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_20

    Chapter  Google Scholar 

  12. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. John Wiley & Sons, New York (2008). https://doi.org/10.2514/4.479557

  13. Gong, W., Cai, Z., Zhu, L.: An efficient multiobjective differential evolution algorithm for engineering design. Struct. Multi. Optim. 38(2), 137–157 (2009). https://doi.org/10.1007/s00158-008-0269-9

    Article  Google Scholar 

  14. Hadka, D.B.: Platypus: multiobjective optimization in python (2020). https://platypus.readthedocs.io/

  15. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based non dominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014). https://doi.org/10.1109/tevc.2013.2281534

    Article  Google Scholar 

  16. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006). https://doi.org/10.1109/tevc.2005.851274

    Article  Google Scholar 

  17. Liu, H., Ong, Y.-S., Cai, J.: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Struct. Multi. Optim. 57(1), 393–416 (2017). https://doi.org/10.1007/s00158-017-1739-8

    Article  Google Scholar 

  18. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approximation 2(1), 11–22 (1986)

    Article  MathSciNet  Google Scholar 

  19. Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79–95 (2016). https://doi.org/10.1007/s10489-016-0825-8

    Article  Google Scholar 

  20. Parsons, M.G., Scott, R.L.: Formulation of multicriterion design optimization problems for solution with scalar numerical optimization methods. J. Ship Res. 48(1), 61–76 (2004). https://doi.org/10.1007/s10489-016-0825-8

    Article  Google Scholar 

  21. Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted \(\cal{S}\)-metric selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 784–794. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_78

    Chapter  Google Scholar 

  22. Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.) Advances in Optimization and Numerical Analysis. MAIA, vol. 275, pp. 51–67. Springer, Netherlands (1994). https://doi.org/10.1007/978-94-015-8330-5_4

    Chapter  Google Scholar 

  23. Regis, R.G., Shoemaker, C.A.: A quasi-multistart framework for global optimization of expensive functions using response surface models. J. Global Optim. 56(4), 1719–1753 (2013). https://doi.org/10.1007/s10898-012-9940-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Rehbach, F., Zaefferer, M., Naujoks, B., Bartz-Beielstein, T.: Expected improvement versus predicted value in surrogate-based optimization. arXiv preprint arXiv:2001.02957 (2020). https://doi.org/10.1145/3377930.3389816

  25. Singh, P., Couckuyt, I., Ferranti, F., Dhaene, T.: A constrained multi-objective surrogate-based optimization algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE (2014). https://doi.org/10.1109/cec.2014.6900581

  26. Tanabe, R., Oyama, A.: A note on constrained multi-objective optimization benchmark problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1127–1134. IEEE (2017). https://doi.org/10.1109/cec.2017.7969433

  27. Urquhart, M., Ljungskog, E., Sebben, S.: Surrogate-based optimisation using adaptively scaled radial basis functions. Appl. Soft Comput. 88, 106050 (2020)

    Article  Google Scholar 

  28. de Winter, R.: SAMO-COBRA: self-adaptive algorithm for multi-objective constrained optimization by using radial basis function approximations (2020). https://doi.org/10.5281/zenodo.4281140

  29. de Winter, R., van Stein, B., Dijkman, M., Bäck, T.: Designing ships using constrained multi-objective efficient global optimization. In: Nicosia, G., Pardalos, P. (eds.) Machine Learning, Optimization, and Data Science. LNCS, vol. 11331. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-13709-0_16

    Chapter  Google Scholar 

  30. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. TIK-report, vol. 103 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy de Winter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Winter, R., van Stein, B., Bäck, T. (2021). SAMO-COBRA: A Fast Surrogate Assisted Constrained Multi-objective Optimization Algorithm. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics