Skip to main content

Comparison of Simulated Macro- and Mesoscopic Cortical Traveling Waves with MEG Data

  • Conference paper
  • First Online:
Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics (Intercognsci 2020)

Abstract

We simulated radial traveling waves of local currents on the folded surface of the human cerebral cortex. The magnetic fields on the surface of the head were calculated by individual MRI. Model MEGs were compared with experimental data using two-dimensional correlation. The maximum values of correlation coefficients were determined for traveling wave velocities of 0.2 m/s with epicenters in the occipital lobes of the brain, including V1 and V2. In these cases, a jump in the levels of maximum correlations in time and space took place. At a velocity of 6 m/s, the maximum values were lower, and the change in the level of correlations was smoothed out. The results of the study show the advantage of the intra-cortical hypothesis of the brain traveling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nikitin, E.S., Balaban, P.M.: Optical recording of responses to odor in olfactory structures of the nervous system in the terrestrial mollusk Helix. Neurosci. Behav. Physiol. 31(1), 21–30 (2001). https://doi.org/10.1023/a:1026666012225. PMID: 11265810

    Article  Google Scholar 

  2. Denker, M., Zehl, L., Kilavik, B.E., Diesmann, M., Brochier, T., Riehle, A., Grün, S.: LFP beta amplitude is linked to mesoscopic spatio-temporal phase patterns. Sci. Rep. 8(1), 5200 (2018). https://doi.org/10.1038/s41598-018-22990-7

    Article  Google Scholar 

  3. Martinet, L.E., Fiddyment, G., Madsen, J.R., Eskandar, E.N., Truccolo, W., Eden, U.T., Cash, S.S., Kramer, M.A.: Human seizures couple across spatial scales through travelling wave dynamics. Nat. Commun. 8, 14896 (2017). https://doi.org/10.1038/ncomms14896

    Article  Google Scholar 

  4. Le Van Quyen, M., Muller, L.E., Telenczuk, B., Halgren, E., Cash, S., Hatsopoulos, N.G., Dehghani, N., Destexhe, A.: High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle. Proc. Natl. Acad. Sci. USA 113(33), 9363–9368 (2016). https://doi.org/10.1073/pnas.1523583113

    Article  Google Scholar 

  5. Muller, L., Reynaud, A., Chavane, F., Destexhe, A.: Thestimulus-evokedpopulation response in visual cortex of awake monkey is a propagating wave. Nat. Commun. 5, 3675 (2014). https://doi.org/10.1038/ncomms4675

    Article  Google Scholar 

  6. Verkhliutov, V.M.: A model of the structure of the dipole source of the alpha rhythm in the human visual cortex. Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova 46, 496–503 (1996). PMID: 8755052

    Google Scholar 

  7. Hindriks, R., van Putten, M.J.A.M., Deco, G.: Intra-cortical propagation of EEG alpha oscillations. Neuroimage 103, 444–453 (2014). https://doi.org/10.1016/j.neuroimage.2014.08.027

    Article  Google Scholar 

  8. Verkhlyutov, V., Sharaev, M., Balaev, V., Osadtchi, A., Ushakov, V., Skiteva, L., Velichkovsky, B.: Towards localization of radial traveling waves in the evoked and spontaneous MEG: a solution based on the intra-cortical propagation hypothesis. Procedia Comput. Sci. 145, 617–622 (2018). https://doi.org/10.1016/j.procs.2018.11.073

    Article  Google Scholar 

  9. Verkhlyutov, V.M., Balaev, V.V., Ushakov, V.L., Velichkovsky, B.M.: A novel methodology for simulation of EEG traveling waves on the folding surface of the human cerebral cortex. Stud. Comput. Intell. 799, 51–63 (2019). https://doi.org/10.1007/978-3-030-01328-8

    Article  Google Scholar 

  10. Alexander, D.M., Ball, T., Schulze-Bonhage, A., van Leeuwen, C.: Large-scale cortical travelling waves predict localized future cortical signals. PLoS Comput. Biol. 15(11), e1007316 (2019). https://doi.org/10.1371/journal.pcbi.1007316. PMID: 31730613

    Article  Google Scholar 

  11. Muller, L., Chavane, F., Reynolds, J., Sejnowski, T.J.: Cortical travelling waves: mechanisms and computational principles. Nat. Rev. Neurosci. 19(5), 255–268 (2018). https://doi.org/10.1038/nrn.2018.20. PMID: 29563572

    Article  Google Scholar 

  12. Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imag. 24, 12–28 (2005). https://doi.org/10.1109/TMI.2004.837363

    Article  Google Scholar 

  13. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011). https://doi.org/10.1155/2011/879716

    Article  Google Scholar 

  14. Verkhlyutov, V.M., Balaev, V.V.: The method of modeling the EEG by calculating radial traveling waves on the folded surface of the human cerebral cortex. bioRxiv, 242412 (2018). https://doi.org/10.1101/242412

  15. Alamia, A., VanRullen, R.: Alpha oscillations and traveling waves: signatures of predictive coding? PLoS Biol. 17(10), e3000487 (2019). https://doi.org/10.1371/journal.pbio.3000487

    Article  Google Scholar 

  16. Lozano-Soldevilla, D., VanRullen, R.: The hidden spatial dimension of alpha: 10-Hz perceptual echoes propagate as periodic traveling waves in the human brain. Cell Rep. 26, 374–380 (2019). https://doi.org/10.1016/j.celrep.2018.12.058

    Article  Google Scholar 

  17. Verkhlyutov, V.M., Ushakov, V.L., Sokolov, P.A., Velichkovsky, B.M.: Large-scale network analysis of imagination reveals extended but limited top-down components in human visual cognition. Psychol. Russ. State Art 7(4), 4–19 (2014). https://doi.org/10.11621/pir.2014.0401

    Article  Google Scholar 

  18. Zanos, T.P., Mineault, P.J., Nasiotis, K.T., Guitton, D., Pack, C.C.: A sensorimotor role for traveling waves in primate visual cortex. Neuron 85(3), 615–627 (2015). https://doi.org/10.1016/j.neuron.2014.12.043. PMID: 25600124

    Article  Google Scholar 

  19. Davis, Z.W., Muller, L., Martinez-Trujillo, J., Sejnowski, T., Reynolds, J.H.: Spontaneous travelling cortical waves gate perception in behaving primates. Nature 587(7834), 432–436 (2020). https://doi.org/10.1038/s41586-020-2802-y. PMID: 33029013

    Article  Google Scholar 

  20. Red’ko, V.G.: Modeling of Cognitive Evolution: Toward the Theory of Evolutionary Origin of Human Thinking. URSS, Moscow (2018)

    Google Scholar 

Download references

Acknowledgments

The work was supported by RFBR Grants 20-015-00475 and partially supported by OFI-m grant 17-29-02518. The work of E.O. Burlakov in the reported study was funded by RFBR and FRLC, project number 20-511-23001. The work of B.M. Velichkovsky was supported by the National Research Center “Kurchatov Institute” (decisions 1055 and 1057 from 02 of July, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly M. Verkhlyutov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verkhlyutov, V.M., Burlakov, E.O., Ushakov, V.L., Velichkovsky, B.M. (2021). Comparison of Simulated Macro- and Mesoscopic Cortical Traveling Waves with MEG Data. In: Velichkovsky, B.M., Balaban, P.M., Ushakov, V.L. (eds) Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics. Intercognsci 2020. Advances in Intelligent Systems and Computing, vol 1358. Springer, Cham. https://doi.org/10.1007/978-3-030-71637-0_81

Download citation

Publish with us

Policies and ethics