Skip to main content

A Review on Existing Methods and Classification Algorithms Used for Sex Determination of Silkworm in Sericulture

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2020)

Abstract

India is one of the major producers and exporters of silk across the world. Sericulture is the term used for the cultivation of silkworms for the production of silk. It includes farming of mulberry, rearing of silkworm, reeling, and twisting to make raw silk. Sericulture is a part of Indian culture especially in the southern states of India are famous for the mulberry silks. Seeds for the production of silkworms are produced in reeling units by mating male and female moths. This requires separation of male and females based on gender. Segregating males and females is a tedious task and this is done in the pupa stage of the silkworm life cycle. In other stages classification is very difficult. The conventional method of gender classification in grainage centers is by expert employees with physical observation. Due to the long hours of work and human errors misclassification occurs and which affects quality seed production. Also for the physical observation cutting of cocoon is needed to take the pupa out and this will damage silk filament as well as sometimes the pupa. Classification of silkworm cocoon has another advantage as male cocoons produce finer silk than females so classification will help to reduce the mixing of silk with different quality. In this review article, the existing methods for the automation of the silkworm classification such as hyperspectral imaging technology, near-infrared spectroscopy, fluorescence characteristics, X-ray, MRI, optical penetration, DNA, computer vision, and the present physical observation methods were explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babu, K.: Silk production and the future of natural silk manufacture. In: Handbook of Natural Fibres, pp. 3–29. Elsevier (2012)

    Google Scholar 

  2. Banno, Y., Shimada, T., Kajiura, Z., Sezutsu, H.: The silkworm–an attractive bio resource supplied by japan. Exp. Anim. 59(2), 139–146 (2010)

    Article  Google Scholar 

  3. Cai, J.R., Yuan, L.M., Liu, B., Sun, L.: Nondestructive gender identification of silkworm cocoons using x-ray imaging with multivariate data analysis. Anal. Methods 6(18), 7224–7233 (2014)

    Google Scholar 

  4. ElMasry, G., Sun, D.W.: Principles of hyperspectral imaging technology. In: Hyperspectral imaging for food quality analysis and control, pp. 3–43. Elsevier (2010)

    Google Scholar 

  5. of Encyclopaedia Britannica, T.E.: Silkworm moth (May 2020). https://www.britannica.com/animal/silkworm-moth

  6. Fang, S.M., Zhou, Q.Z., Yu, Q.Y., Zhang, Z.: Genetic and genomic analysis for cocoon yield traits in silkworm. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  7. Forsyth, D.A., Ponce, J.: Computer Vision: a Modern Approach. Prentice Hall Professional Technical Reference, Boston (2002)

    Google Scholar 

  8. Fujii, T., Shimada, T.: Sex determination in the silkworm, bombyx mori: a female determinant on the w chromosome and the sex-determining gene cascade. In: Seminars in Cell & Developmental Biology, vol. 18, pp. 379–388. Elsevier (2007)

    Google Scholar 

  9. Hart, J.R., Norris, K.H., Golumbic, C.: Determination of the moisture content of seeds by near-infrared spectrophotometry of their methanol extracts. Cereal Chem. 39(2), 94–99 (1962)

    Google Scholar 

  10. Jin, T., Liu, L., Tang, X., Chen, H.: Differentiation of male, female and dead silkworms while in the cocoon by near infrared spectroscopy. J. Near Infrared Spectrosc. 3(2), 89–95 (1995)

    Article  Google Scholar 

  11. Joseph Raj, A.N., Sundaram, R., Mahesh, V.G., Zhuang, Z., Simeone, A.: A multi-sensor system for silkworm cocoon gender classification via image processing and support vector machine. Sensors 19(12), 2656 (2019)

    Article  Google Scholar 

  12. Kamtongdee, C., Sumriddetchkajorn, S., Chanhorm, S., Kaewhom, W.: Noise reduction and accuracy improvement in optical-penetration-based silkworm gender identification. Appl. Opt. 54(7), 1844–1851 (2015)

    Article  Google Scholar 

  13. Katsuma, S., Kiuchi, T., Kawamoto, M., Fujimoto, T., Sahara, K.: Unique sex determination system in the silkworm, bombyx mori: current status and beyond. Proc. Jpn. Acad. Ser. B 94(5), 205–216 (2018)

    Article  Google Scholar 

  14. Khoo, V.S., Dearnaley, D.P., Finnigan, D.J., Padhani, A., Tanner, S.F., Leach, M.O.: Magnetic resonance imaging (mri): considerations and applications in radiotherapy treatment planning. Radiother. Oncol. 42(1), 1–15 (1997)

    Article  Google Scholar 

  15. Kiuchi, T., Koga, H., Kawamoto, M., Shoji, K., Sakai, H., Arai, Y., Ishihara, G., Kawaoka, S., Sugano, S., Shimada, T., et al.: A single female-specific pirna is the primary determiner of sex in the silkworm. Nature 509(7502), 633–636 (2014)

    Article  Google Scholar 

  16. Liu, C., Ren, Z.H., Wang, H.Z., Yang, P.Q., Zhang, X.L.: Analysis on gender of silkworms by mri technology. In: 2008 International Conference on BioMedical Engineering and Informatics, vol. 2, pp. 8–12. IEEE (2008)

    Google Scholar 

  17. Liu, L.: Automatic identification system of silkworm cocoon based on computer vision method. Revista Cientifica-Facultad de Ciencias Veterinarias 29(4), 785–795 (2019)

    Google Scholar 

  18. Mahesh, V.G., Raj, A.N.J., Celik, T.: Silkworm cocoon classification using fusion of zernike moments-based shape descriptors and physical parameters for quality egg production. Int. J. Intell. Syst. Technol. Appl. 16(3), 246–268 (2017)

    Google Scholar 

  19. Ozaki, Y., Genkawa, T., Futami, Y.: Near-infrared spectroscopy (2017)

    Google Scholar 

  20. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36(13), R167 (2003)

    Article  Google Scholar 

  21. Pasquini, C.: Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 14(2), 198–219 (2003)

    Article  Google Scholar 

  22. Prieto, N., Pawluczyk, O., Dugan, M.E.R., Aalhus, J.L.: A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Appl. Spectros. 71(7), 1403–1426 (2017)

    Article  Google Scholar 

  23. Rajendran, T., Singh, D.: Insects and pests. In: Ecofriendly Pest Management for Food Security, pp. 1–24. Elsevier (2016)

    Google Scholar 

  24. Resh, V.H., Cardé, R.T.: Encyclopedia of Insects. Academic Press, Boston (2009)

    Google Scholar 

  25. Richardson, J.C., Bowtell, R.W., Mäder, K., Melia, C.D.: Pharmaceutical applications of magnetic resonance imaging (mri). Adv. Drug Deliv. Rev. 57(8), 1191–1209 (2005)

    Article  Google Scholar 

  26. Schmidt, S.J., Sun, X., Litchfield, J.B., Eads, T.M.: Applications of magnetic resonance imaging in food science. Crit. Rev. Food Sci. Nutr. 36(4), 357–385 (1996)

    Article  Google Scholar 

  27. Schneider, A., Feussner, H.: Biomedical Engineering in Gastrointestinal Surgery. Academic Press, Boston (2017)

    Google Scholar 

  28. Siche, R., Vejarano, R., Aredo, V., Velasquez, L., Saldaña, E., Quevedo, R.: Evaluation of food quality and safety with hyperspectral imaging (hsi). Food Eng. Rev. 8(3), 306–322 (2016)

    Article  Google Scholar 

  29. Sumriddetchkajorn, S., Kamtongdee, C.: Optical penetration-based silkworm pupa gender sensor structure. Appl. Opt. 51(4), 408–412 (2012)

    Article  Google Scholar 

  30. Sumriddetchkajorn, S., Kamtongdee, C., Chanhorm, S.: Fault-tolerant optical-penetration-based silkworm gender identification. Comput. Electron. Agric. 119, 201–208 (2015)

    Article  Google Scholar 

  31. Sumriddetchkajorn, S., Kamtongdee, C., Sa-Ngiamsak, C.: Spectral imaging analysis for silkworm gender classification. In: Sensing Technologies for Biomaterial, Food, and Agriculture 2013, vol. 8881, p. 888106. International Society for Optics and Photonics (2013)

    Google Scholar 

  32. Suryanarayana, C., Norton, M.G.: X-rays and diffraction. In: X-Ray Diffraction, pp. 3–19. Springer (1998)

    Google Scholar 

  33. Tao, D., Qiu, G., Li, G.: A novel model for sex discrimination of silkworm pupae from different species. IEEE Access 7, 165328–165335 (2019)

    Article  Google Scholar 

  34. Tao, D., Wang, Z., Li, G., Qiu, G.: Accurate identification of the sex and species of silkworm pupae using near infrared spectroscopy. J. Appl. Spectro. 85(5), 949–952 (2018)

    Article  Google Scholar 

  35. Tao, D., Wang, Z., Li, G., Xie, L.: Simultaneous species and sex identification of silkworm pupae using hyperspectral imaging technology. Spectros. Lett. 51(8), 446–452 (2018)

    Article  Google Scholar 

  36. Tao, D., Wang, Z., Li, G., Xie, L.: Sex determination of silkworm pupae using vis-nir hyperspectral imaging combined with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 208, 7–12 (2019)

    Article  Google Scholar 

  37. Xiaolong, H., Renyu, X., Guangli, C., Xing, Z., Yilin, Z., Xiaohua, Y., Yuqing, Z., Chengliang, G.: Elementary research of the formation mechanism of sex-related fluorescent cocoon of silkworm, bombyx mori. Mol. Biol. Rep. 39(2), 1395–1409 (2012)

    Article  Google Scholar 

  38. Zhang, Y., Yu, X., Shen, W., Ma, Y., Zhou, L., Xu, N., Yi, S.: Mechanism of fluorescent cocoon sex identification for silkworms bombyx mori. Sci. China Life Sci. 53(11), 1330–1339 (2010)

    Article  Google Scholar 

  39. Zhu, Z., Yuan, H., Song, C., Li, X., Fang, D., Guo, Z., Zhu, X., Liu, W., Yan, G.: High-speed sex identification and sorting of living silkworm pupae using near-infrared spectroscopy combined with chemometrics. Sens. Actuators B Chem. 268, 299–309 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sania Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, S., Thomas, J. (2021). A Review on Existing Methods and Classification Algorithms Used for Sex Determination of Silkworm in Sericulture. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds) Intelligent Systems Design and Applications. ISDA 2020. Advances in Intelligent Systems and Computing, vol 1351. Springer, Cham. https://doi.org/10.1007/978-3-030-71187-0_52

Download citation

Publish with us

Policies and ethics