Skip to main content

Climatological Study of Extreme Wind Events in a Coastal Area

  • Chapter
  • First Online:
Environmental Protection and Disaster Risks (EnviroRISK 2020)

Abstract

Long-term sodar measurements (Aug 2008–Oct 2016) of wind and turbulence profiles with high spatial (10 m) and temporal (10 min) resolution were performed at the southern Bulgarian Black Sea coast. This data has provided an opportunity to define “rare” values of meteorological parameters within their statistical distributions and to identify them as extreme events according to the Intergovernmental Panel on Climate Change. The statistical analysis of wind speed profiles has been performed for the eight-year period using the two parameter Weibull distribution. The determination of the ninety-percentile of this statistical distribution (at every sodar measurement level from 30 up to 600 m) has given values (“rare” events) that have defined the theoretical extreme wind speed profile (reference profile). On this basis, the extreme profiles during the reviewed period have been determined. Analysis of the distribution of the situations with extreme weather events by months and hours for the entire period has been performed. The multiple time series with the registered extreme profiles have been used to derive averaged parameters defining the vertical structure of the coastal boundary layer during extreme events. The thermodynamic state of the coastal boundary layer according to the Pasquill-Gifford classification has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, M., P.J., Dai, X., Maskell, K., Johnson, C.A. (eds.). p. 881. Cambridge University Press, United Kingdom and New York, NY, USA (2001)

    Google Scholar 

  2. IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. In: Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., Midgley, P.M. (eds.). Cambridge University Press, Cambridge, UK, and New York, NY, USA (2012)

    Google Scholar 

  3. Prasad, S.T.: Remotely Sensed Data Characterization, Classification, and Accuracies Remote Sensing Handbook, vol. 1. CRC Press, (2015)

    Google Scholar 

  4. Sathe, A., Courtney, M., Mann, J., Wagner, R.: How good are remote sensors at measuring extreme winds?. Paper presented at the EWEA Conference, Brussels, Belgium, 14–17 March 2011

    Google Scholar 

  5. Gottschall, J., Wolken-Möhlmann, G., Lange, B.: About offshore resource assessment with floating lidars with special respect to turbulence and extreme events. J. Phys. Conf. Ser. 555(1), 012043 (2014). https://doi.org/10.1088/1742-6596/555/1/012043

    Article  Google Scholar 

  6. Pérez, I.A., Garcı́a, M.A., Sánchez, M.L., de Torre, B.: Analysis of height variations of sodar-derived wind speeds in Northern Spain. J. Wind Eng. Ind. Aerodyn. 92(10), 875–894 (2004). https://doi.org/10.1016/j.jweia.2004.05.002

  7. Pérez, I.A., Sánchez, M.L., Garcı́a, M.A., de Torre, B.: Comparison between measurements obtained with a meteorological mast and a RASS sodar. In: 3rd International Conferences on Experiences with Automatic Weather Stations, Torremolinos, Malaga, Spain, 19–21 Feb 2003

    Google Scholar 

  8. Engelbart, D., Monna, W., Nash, J., Mätzler, C.: COST 720 Final Report: Integrated ground-based remote-sensing stations for atmospheric profiling. Office for Official Publication of the European Communities, Luxembourg (2009)

    Google Scholar 

  9. Cimini, D., Marzano, F.S., Visconti, G.: Integrated Ground-Based Observing Systems. Springer, Berlin Heidelberg (2011)

    Book  Google Scholar 

  10. Emeis, S.: Surface-based remote sensing of the atmospheric boundary layer, 1st ed. Atmospheric and Oceanographic Sciences Library. Springer Berlin Heidelberg, New York (2010)

    Google Scholar 

  11. Peña, A., Floors, R.R., Sathe, A., Gryning, S.-E., Wagner, R., Courtney, M., Larsén, X.G., Hahmann, A.N., Hasager, C.B.: Ten years of boundary-layer and wind-power meteorology at Høvsøre, Denmark. Bound.-Layer Meteorol. 158(1), 1–26 (2016). https://doi.org/10.1007/s10546-015-0079-8

    Article  Google Scholar 

  12. Illingworth, A., Ruffieux, D., Cimini, D., Lohnert, U., Haeffelin, M., Lehmann, V.: COST action ES0702 final report: European ground-based observations of essential variables for climate and operational meteorology. In: COST Action ES0702 EG-CLIMET, p. 141. COST Office, PUB1062 (2013)

    Google Scholar 

  13. Coulter, R.L., Kallistratova, M.A.: Two decades of progress in SODAR techniques: a review of 11 ISARS proceedings. Meteorol. Atmos. Phys. 85, 3–19 (2004). https://doi.org/10.1007/s00703-003-0030-2

    Article  Google Scholar 

  14. Bradley, S., Antoniou, I., Hünerbein, S.v., Kindler, D., Noord, M.d., Jørgensen, H.: SODAR calibration procedure (final reporting on WP3, EU WISE project NNE5-2001-297) In: Stuart Bradley, p. 69. The University of Salford, Salford, Greater Manchester, UK, (2005)

    Google Scholar 

  15. Engelbart, D., Monna, W., Nash, J., Mätzler, C.: Integrated ground-based remote-sensing stations for atmospheric profiling. In: Engelbart, D., Monna, W., Nash, J., Mätzler, C. (eds.), COST action 720: Final Report, p. 398. Publications Office of the European Union - COST Office, Luxembourg (2009)

    Google Scholar 

  16. Illingworth, A., Ruffieux, D., Haeffelin, M., O’Connor, E., Cimini, D., Potthast, R.: COST Action Final Achievement Report ES1303: Towards operational ground based profiling with ceilometers, doppler lidars and microwave radiometers for improving weather forecasts (TOPROF). In: Illingworth, A., Ruffieux, D., Haeffelin, M., O’Connor, E., CIMINI, D., Potthast, R. (eds.). COST Association AISBL, Brussels, Belgium, (2017)

    Google Scholar 

  17. Illingworth, A., Cimini, D., Gaffard, C., Haeffelin, M., Lehmann, V., Löhnert, U., O’Connor, E.J., Ruffieux, D.: Exploiting existing ground-based remote sensing networks to improve high-resolution weather forecasts. Bull. Am. Meteor. Soc. 96(12), 2107–2125 (2015). https://doi.org/10.1175/BAMS-D-13-00283.1

    Article  Google Scholar 

  18. Cimini, D., Haeffelin, M., Kotthaus, S., Löhnert, U., Martinet, P., O’Connor, E., Walden, C., Coen, M.C., Preissler, J.: Towards the profiling of the atmospheric boundary layer at European scale—introducing the COST Action PROBE. Bull. Atmos. Sci. Technol. 1(1), 23–42 (2020). https://doi.org/10.1007/s42865-020-00003-8

    Article  Google Scholar 

  19. Barantiev, D., Novitsky, M., Batchvarova, E.: Meteorological observations of the coastal boundary layer structure at the Bulgarian Black Sea coast. Adv. Sci. Res. (ASR) (6), 251–259 (2011). https://doi.org/10.5194/asr-6-251-2011

  20. Batchvarova, E., Barantiev, D., Novitsky, M.: Costal boundary layer wind profile based on SODAR data—Bulgarian contribution to COST Acton ES0702. Paper presented at the The 16th International Symposium for the Advancement of Boundary-Layer Remote Sensing—ISARS Boulder, Colorado, USA, 5–8 June 2012

    Google Scholar 

  21. Novitsky, M., Kulizhnikova, L., Kalinicheva, O., Gaitandjiev, D., Batchvarova, E., Barantiev, D., Krasteva, K.: Characteristics of speed and wind direction in atmospheric boundary layer at southern coast of Bulgaria. Russ. Meteorol. Hydrol. 37(3), 159–164 (2012). https://doi.org/10.3103/S1068373912030028

    Article  Google Scholar 

  22. Barantiev, D., Batchvarova, E., Novitsky, M.: Exploration of the coastal boundary layer in ahtopol through remote acoustic sounding of the atmosphere. Paper presented at the 2nd National Congress on Physical Sciences and 41st National Conference on Physics Education Matters, Sofia, Bulgaria, 25–29 Sept 2013

    Google Scholar 

  23. Sabev, L., Stanev, S.: Climate regions of Bulgaria and their climate, vol. V. State Publishing House “Science and Art”, Sofia, Bulgaria (1959)

    Google Scholar 

  24. Barantiev, D., Batchvarova, E., Novitsky, M.: Breeze circulation classification in the coastal zone of the town of Ahtopol based on data from ground based acoustic sounding and ultrasonic anemometer. Bulgarian J. Meteorol. Hydrol. (BJMH) 22(5), 24 (2017)

    Google Scholar 

  25. ScintecAG: Scintec Flat Array Sodars - Hardware Manual (SFAS, MFAS, XFAS) including RASS RAE1 and windRASS, Version 1.03 ed. Scintec AG, Germany (2011)

    Google Scholar 

  26. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill Europe (2002)

    Google Scholar 

  27. Indhumathy, D., Seshaiah, C.V., Sukkiramathi, K.: Estimation of Weibull parameters for wind speed calculation at Kanyakumari in India. J. Innov. Res. Sci. Eng. Technol. 3(1) (2014)

    Google Scholar 

  28. Sornette, D.: Critical Phenomena in Natural Sciences: Chaos, Fractals Selforganization and Disorder: Concepts and Tools. Springer, Berlin (2004)

    Google Scholar 

  29. Papanchev, T.: A modified approach for parameters estimation of the Weibull distribution for interval data and zero or few failures. J. Notices Union Sci. Varna, Technical Sciences Series (2013)

    Google Scholar 

  30. Gryning, S.-E., Batchvarova, E., Floors, R.R., Peña, A., Brümmer, B., Hahmann, A.N., Mikkelsen, T.: Long-term profiles of wind and Weibull distribution parameters up to 600 m in a rural coastal and an inland suburban area. Bound.-Layer Meteorol. 150(2), 167–184 (2014). https://doi.org/10.1007/s10546-013-9857-3

    Article  Google Scholar 

  31. Lun, I.Y.F., Lam, J.C.: A study of Weibull parameters using long-term wind observations. Renew. Energy 20(2), 145–153 (2000). https://doi.org/10.1016/s0960-1481(99)00103-2

    Article  Google Scholar 

  32. He, Y., Monahan, A.H., Jones, C.G., Dai, A., Biner, S., Caya, D., Winger, K.: Probability distributions of land surface wind speeds over North America. J. Geophys. Res. Atmos. 115(D4) (2010). https://doi.org/10.1029/2008JD010708

  33. Wijnant, I.L., van den Brink, H.W., Stepek, A.: North Sea Wind Climatology Part 1: A Review of Existing Wind Atlases, vol. TR-342, p. 66. Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment, De Bilt, Netherlands, (2014)

    Google Scholar 

  34. Stevens, M.J.M., Smulders, P.T.: The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Eng. 3(2), 132–145 (1979)

    Google Scholar 

  35. IPCC: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Team, C.W., Pachauri, R.K., Reisinger, A. (eds.), p. 104. IPCC, Geneva, Switzerland, Printed in Sweden (2007)

    Google Scholar 

  36. Bailey, D.T.: Meteorological monitoring guidance for regulatory modeling applications. In: Standards, O.o.A.Q.P.a. (ed.), p. 171. United States Environmental Protection Agency (EPA), Research Triangle Park, NC 27711 (2000)

    Google Scholar 

Download references

Acknowledgements

The work is within the frame of research projects DM 14/1 26-05-2020 (REPLICA—extReme Events and wind ProfiLe In a Coastal Area) project, funded by National Science Fund of Bulgaria and it was partially supported by the Bulgarian Ministry of Education and Science under the National Research Programme “Young scientists and postdoctoral students” approved by DCM # 577 /17.08.2018. The contribution of E. Batchvarova is supported by the National Science Fund of Bulgaria, Contract KP-06-N34/1 30-09-2020 “Natural and anthropogenic factors of climate change—analyses of global and local periodical components and long-term forecasts”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damyan Barantiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barantiev, D., Batchvarova, E., Kirova, H., Gueorguiev, O. (2021). Climatological Study of Extreme Wind Events in a Coastal Area. In: Dobrinkova, N., Gadzhev, G. (eds) Environmental Protection and Disaster Risks. EnviroRISK 2020. Studies in Systems, Decision and Control, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-70190-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70190-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70189-5

  • Online ISBN: 978-3-030-70190-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics