Skip to main content

Double Diffusive Mixed Convection with Thermodiffusion Effect in a Driven Cavity by Lattice Boltzmann Method

  • Conference paper
  • First Online:
  • 437 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12599))

Abstract

We perform a numerical study of thermal diffusion effects on double-diffusive mixed convection in a lid-driven square cavity, differentially heated and salted. The fluid flow is solved by a multiple relaxation time (MRT) lattice Boltzmann method (LBM), whereas the temperature and concentration fields are computed by finite difference method (FDM). To assess numerical accuracy, the model (MRT-LBM coupled with FDM) are verified and validated using data from the literature. Besides reasonable agreement, satisfactory computational efficiency is also found. Thereafter, the model is applied for the thermal diffusion effect on a double-diffusive mixed convection in a cavity with moving lid. Results are obtained depending on various dimensionless parameters. It is found that upon increasing the Soret number, heat transfer is slightly enhanced whereas the thickness of the concentration boundary layer increases, thereby decreasing the mass transfer rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Succi, S.: The Lattice Boltzmann - For Fluid Dynamics and Beyond, 288p. Oxford University Press, Oxford (2001)

    Google Scholar 

  2. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 22, 145–197 (1992)

    Article  Google Scholar 

  3. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, p. 308p. Springer, Berlin (2000). https://doi.org/10.1007/b72010

  4. Filippova, O., Hanel, D.: A novel BGK approach for low Mach number combustion. J. Comput. Phys. 158, 139–160 (2000)

    Article  MathSciNet  Google Scholar 

  5. Kuznik, F., Obrecht, C., Rusaouen, G., Roux, J.J.: LBM based flow simulation using GPU computing processor. Comput. Math. Appl. 59, 2380–2392 (2010)

    Article  Google Scholar 

  6. Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Google Scholar 

  7. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys. Rev. E 68(3 Pt 2), 036706 (2003). Epub 2003 Sep 23

    Google Scholar 

  8. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.: Multiple-relaxation-timel attice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 437–451 (2002)

    Google Scholar 

  9. Chen, Y., Ohashi, H., Akiyama, M.A.: Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. Phys. Rev. E 50, 2776–2783 (1994)

    Article  Google Scholar 

  10. Pavlo, P., Vahala, G., Vahala, L., Soe, M.: Linear stability analysis of thermo-lattice Boltzmann models. J. Comput. Phys 139, 79–91 (1998)

    Article  MathSciNet  Google Scholar 

  11. McNamara, G.R., Garca, A.L., Alder, B.J.: A hydrodynamically correct thermal lattice Boltzmann model. J. Stat. Phys. 97, 1111–1121 (1997)

    Article  MathSciNet  Google Scholar 

  12. Massaioli, F., Benzi, R., Succi, S.: Exponential tails in two-dimensional Rayleigh-Bénard convection. Europhys. Lett. 21, 305–310 (1993)

    Article  Google Scholar 

  13. Mezrhab, A., Moussaoui, M.A., Jami, M., Naji, H., Bouzidi, M.: Double MRT thermal lattice Boltzmann method for simulating convective flows. Phys. Lett. A 374, 3499–3507 (2010)

    Article  Google Scholar 

  14. Kuznik, F., Rusaouen, G.: Numerical prediction of natural convection occurring in building components: a double-population lattice Boltzmann method. Numer. Heat Tr. A-Appl. 52, 315–335 (2007)

    Google Scholar 

  15. Kuznik, F., Vareilles, J., Rusaouen, G., Krauss, G.: A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity. Int. J. Heat Fluid Flow 28, 862–870 (2007)

    Article  Google Scholar 

  16. Lallemand, P., Luo, L.-S.: Hybrid finite-difference thermal lattice Boltzmann equation. Int. J. Mod. Phys. B. 17, 41–47 (2003)

    Article  Google Scholar 

  17. Béghein, C., Haghighat, F., Allard, F.: Numerical study of double diffusive natural convection in a square cavity. Int. J. Heat Mass Transf. 35, 833–846 (1992)

    Article  Google Scholar 

  18. Morega, A., Nishimura, T.: Double diffusive convection by Chebyshev collocation method. Technol. Rep. Univ. 5, 259–276 (1996)

    Google Scholar 

  19. Makayssi, T., Lamsaadi, M., Naimi, M., Hasnaoui, M., Raji, A., Bahlaoui, A.: Natural double diffusive convection in a shallow horizontal rectangular cavity uniformly heated and salted from the side and filled with non-Newtonian power-law fluids: the cooperating case. Energy Convers. Manag. 49, 2016–2025 (2008)

    Article  Google Scholar 

  20. Alleborn, N., Raszillier, H., Durst, F.: Lid-driven cavity with heat and mass transport. In. J. Heat Mass Transf. 42, 833–853 (1999)

    Article  Google Scholar 

  21. All-Amiri, A.M., Khanafer, K.M., Pop, I.: Numerical simulation of combined thermal and mass transport in a square lid-driven cavity. In. J. Ther. Sci. 46, 622–671 (2007)

    Google Scholar 

  22. Teamah, M.A., El-Maghlany, W.M.: Numerical simulation of double-diffusive mixed convective flow in rectangular enclosure with insulated moving lid. Int. J. Ther. Sci. 49, 1625–1638 (2010)

    Google Scholar 

  23. Mansour, A., Amahmid, A., Hasnaoui, M., Bourich, M.: Soret effect on double diffusive multiple solutions in a square porous cavity subject to cross gradients of temperature and concentration. Int. Comm. Heat Mass Transfer 31, 431–440 (2004)

    Article  Google Scholar 

  24. Bennacer, R., Mahidjiba, A., Vasseur, P., Beji, H., Duval, R.: The Soret effect on convection in a horizontal porous domain under cross-temperature and concentration gradients. Int. J. Numer. Methods Heat. Fluid. Flow 13, 199–215 (2003)

    Google Scholar 

  25. Rebai, L.K., Mojtabi, A., Safi, M.J., Mohamad, A.A.: Numerical study of thermosolutal convection with soret effect in a square cavity. Int. J. Numer. Methods Heat. Fluid. Flow 18, 561–574 (2008)

    Google Scholar 

  26. Bahloul, A., Boutana, N., Vasseur, P.: Double-diffusive and Soret-induced convection in a shallow horizontal porous layer. J. Fluid Mech. 491, 325–352 (2003)

    Article  Google Scholar 

  27. Khadiri, A., Amahmid, A., Hasnaoui, M., Rtibi, A.: Soret effect on double-diffusive convection in a square porous cavity heated and salted from below. Numer. Heat Transf. A 57, 848–868 (2010)

    Article  Google Scholar 

  28. Joly, F., Vasseur, P., Labrosse, G.: Soret-driven thermosolutal convection in a vertical enclosure. Int. Comm. Heat Mass Transfer 27, 755–764 (2000)

    Article  Google Scholar 

  29. Tsai, R., Huang, J.S.: Numerical study of Soret and dufour effects on heat and mass transfer from natural convection flow over a vertical porous medium with variable wall heat fluxes. Comput. Mater. Sci. 47, 23–30 (2009)

    Article  Google Scholar 

  30. Nader Ben Cheikh: Rrahim Ben Beya, Taieb Lili, Benchmark solution for time-dependent natural convection flows with an accelerated full-multigrid method. Num. Heat. transfer. prat B 52, 131–151 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiene Bettaibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bettaibi, S., Jellouli, O. (2021). Double Diffusive Mixed Convection with Thermodiffusion Effect in a Driven Cavity by Lattice Boltzmann Method. In: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds) Cellular Automata. ACRI 2020. Lecture Notes in Computer Science(), vol 12599. Springer, Cham. https://doi.org/10.1007/978-3-030-69480-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69480-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69479-1

  • Online ISBN: 978-3-030-69480-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics