Skip to main content

COVIDz: Deep Learning for Coronavirus Disease Detection

  • Chapter
  • First Online:
Computational Intelligence Techniques for Combating COVID-19

Abstract

The severe damage caused by COVID-19 has become a reality, and there is no longer a way to save humanity from this epidemic except diagnose and prevention, especially with emergence delay and lack of vaccine recognized by the World Health Organization. Without therapeutic treatment or explicit restorative immunizations for COVID-19, it is fundamental to diagnose the disease at an early stage and quickly seclude patients contaminated with the virus. This study aims at estimating the damage via consistency of chest imaging, which is not always feasible or possible. Here, an application is proposed to solve the problem via a WEB Predictor ‘COVIDz” and a program exploiting deep learning, so as emergency care will be able to systematically bring chest X-ray images and predict the percentage of the absence or presence of COVID-19. The proposed approach (custom VGG model) and our WEB site “COVIDz” objective validation of the suggested solution obtained the best classification efficiency of 99.64%, F-score of 99.2%, precision of 99.28%, MCC of 99.28%, recall of 99.28%, and a specificity value of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Coronavirus disease 2019 (covid-19): situation report, 207. 2020.

    Google Scholar 

  2. Satuna, R. K., Negi, A., & Satuna, R. (2020). Intuitive vision and indigenous immunity boosting approaches for COVID19: From the literature of Pandit Shriram Sharma Acharya. Dev Sanskriti Interdisciplinary International Journal, 16, 01–15. https://doi.org/10.36018/dsiij.v16i.162.

    Google Scholar 

  3. Roosa, K., Lee, Y., Luo, R., et al. (2020). Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th. Infectious Disease Modelling, 5, 256–263. https://doi.org/10.1016/j.idm.2020.02.002.

    Google Scholar 

  4. Bisgaard, H., & Pedersen, M. (1987). SRS-A leukotriene’s decrease the activity of human respiratory cilia. Clinical Experimental Allergy, 17(2), 95–103.

    Google Scholar 

  5. Yu, Y., Shi, Q., Zheng, P., Gao, L., Li, H., Tao, P., & Chen, H. (2020). Assessment of the quality of systematic reviews on COVID-19: A comparative study of previous coronavirus outbreaks. Journal of Medical Virology. https://doi.org/10.1002/jmv.25901.

  6. https://www.lung.org/lung-health-diseases/lung-disease-lookup/pneumonia/symptoms-and-diagnosis. Accessed Aug 16, 2020.

  7. Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., Touloumi, G., Lye, D. C., Ohmagari, N., Oh, M., Ruiz-Palacios, G. M., Benfield, T., Fätkenheuer, G., Kortepeter, M. G., Atmar, R. L., Creech, C. B., Lundgren, J., Babiker, A. G., Pett, S., Neaton, J. D., Burgess, T. H., Bonnett, T., Green, M., Makowski, M., Osinusi, A., Nayak, S., Lane, H. C., & for the ACTT-1 Study Group Members. (2020. Massachusetts Medical Society). Remdesivir for the treatment of Covid-19 – Preliminary report. The New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2007764.

  8. Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. https://doi.org/10.1007/s00134-020-06028-z.

  9. Holmes, E. A., O’Connor, R. C., Perry, V. H., Tracey, I., Wessely, S., Arseneault, L., & Bullmore, E. (2020). Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. The Lancet Psychiatry. https://doi.org/10.1016/s2215-0366(20)30168-1.

  10. Murthy, S., Gomersall, C. D., & Fowler, R. A. (2020). Care for critically ill patients with COVID-19. Journal of the American Medical Association. https://doi.org/10.1001/jama.2020.3633.

  11. Lee, V. J., Chiew, C. J., & Khong, W. X. (April 2020). Interrupting transmission of COVID-19: lessons from containment efforts in Singapore. Journal of Travel Medicine, 27(3), taaa039. https://doi.org/10.1093/jtm/taaa039.

    Google Scholar 

  12. Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine, 43, 635–640. https://doi.org/10.1007/s13246-020-00865-4.

    Google Scholar 

  13. Narayan Das, N., Kumar, N., Kaur, M., Kumar, V., & Singh, D. (2020). Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays. IRBM. https://doi.org/10.1016/j.irbm.2020.07.001.

  14. Tsiknakis, N., Trivizakis, E., Vassalou, E. E., Papadakis, G. Z., Spandidos, D. A., Tsatsakis, A., Sánchez-García, J., López-González, R., Papanikolaou, N., Karantanas, A. H., Karantanas, A. H., et al. (2020). Interpretable artificial intelligence framework for COVID-19 screening on chest X-rays. Experimental and Therapeutic Medicine, 20, 727–735.

    Google Scholar 

  15. Ucar, F., & Korkmaz, D. (2020). COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnostic of the coronavirus disease 2019 (COVID-19) from X-Ray images. Medical Hypotheses, 109761. https://doi.org/10.1016/j.mehy.2020.109761.

  16. Islam, M. Z., Islam, M. M., & Asraf, A. (2020). A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Informatics in Medicine Unlocked, 100412. https://doi.org/10.1016/j.imu.2020.100412.

  17. Turkoglu, M. (2020). COVIDetectioNet: COVID-19 diagnosis system based on X-ray images using features selected from pre-learned deep features ensemble. Applied Intelligence., Springer Science Media, LLC, part of Springer Nature. https://doi.org/10.1007/s10489-020-01888-w.

  18. Khan, A. I., Shah, J. L., & Bhat, M. M. (2020). CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. Computer Methods and Programs in Biomedicine, 196, 105581. https://doi.org/10.1016/j.cmpb.2020.105581.

    Google Scholar 

  19. Xin, L., Chengyin, L., & Dongxiao, Z. (2020). COVID-MOBILEXPERT: On-devıce covıd-19 screenıng usıng snapshots of chest x-ray. https://arxiv.org/pdf/2004.03042v2.pdf

  20. Wang, L., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. ArXiv 2200309871.

    Google Scholar 

  21. Afshar, P., Heidarian, S., Naderkhani, F., Oikonomou, A., Plataniotis, K. N., Mohammadi, A., et al. (2020). COVİD-CAPS: A capsule network-based framework for identification of Covid-19 cases from X-Ray images. 1–4, 2020. ArXiv Prepr ArXiv200402696.

    Google Scholar 

  22. Farooq, M., & Hafeez, A. (2020). COVID-RESNET: A deep learning framework for screening of COVID19 from Radiographs.

    Google Scholar 

  23. Dominique, P., Maurice, R., & Albert, T.-D. (2019). Méga-guide pratique des urgences, de l'evidence based medicine à la pratique 2ème édition, Editeur: Elsevier Masson, pp. 984. ISBN: 9782294760938, EISBN: 9782294761645.

    Google Scholar 

  24. Taori, P., & Dasararaju, H. (2019). Introduction to Python. https://doi.org/10.1007/978-3-319-68837-4_29.

  25. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations (ICLR).

    Google Scholar 

  26. https://github.com/m-mohsin-zafar/shk_covid_pytorch. Accessed Aug 1, 2020.

  27. Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights Into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9.

    Google Scholar 

  28. Ahmed, U., Khan, A., Khan, S. H., Basit, A., Haq, I. U., & Lee, Y. S. (2019). Transfer learning and meta classification based deep churn prediction system for telecom industry. 1–10. http://arxiv.org/abs/1901.06091.

  29. Wahab, N., Khan, A., & Lee, Y. S. (2019). Transfer learning based deep CNN for segmentation and detection of mitoses in breast cancer histopathological images. Microscopy, 68(3), 216–233. https://doi.org/10.1093/jmicro/dfz002.

    Google Scholar 

  30. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional. Neural Networks, 1–68. https://doi.org/10.1007/s10462-020-09825-6.

  31. Liu, X., Chi, M., Zhang, Y., & Qin, Y. (2018). Classifying high resolution remote sensing images by fine-tuned VGG deep networks. In: International Geoscience and Remote Sensing Symposium. https://doi.org/10.1109/IGARSS.2018.8518078.

  32. Kieffer, B., Babaie, M., Kalra, S., & Tizhoosh, H. R. (2018). Convolutional neural networks for histopathology image classification: Training vs. Using pre-trained networks. In: Proceedings of the 7th International Conference on Image Processing Theory, Tools and Applications, IPTA. https://doi.org/10.1109/IPTA.2017.8310149.

  33. Szegedy, C., Wei, L., Yangqing, J., et al. (2015). Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 07, pp. 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  34. Simonyan, K., & Zisserman, A. (2015). Very deep convolutıonal networks for large-scale ımage recognıtıon. ICLR, 75(6), 398–406. https://doi.org/10.2146/ajhp170251.

    Google Scholar 

  35. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. Multimedia Tools and Applications, 77(9), 10437–10453. https://doi.org/10.1007/s11042-017-4440-4.

    Google Scholar 

  36. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. IEEE Conf Comput Vis Pattern Recognition, CVPR. 2261–2269. https://doi.org/10.1109/CVPR.2017.243.

  37. Syeda, H. B., Syed, M., Sexton, K. W., Syed, S., Begum, S., Syed, F., Yu Jr., F. The role of machine learning techniques to tackle COVID-19 crisis: A systematic review. medRxiv 2020.08.23.20180158; https://doi.org/10.1101/2020.08.23.20180158.

  38. Kashour, Z. T., Riaz, M., Garbati, M., Aldosary, O., Tlayjeh, H., Gerberi, D., Murad, M. H. M., Sohail, R., Kashour, T., Tleyjeh, I. M. (2020). Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: A systematic review and meta-analysis medRxiv 2020.07.12.20150110; https://doi.org/10.1101/2020.07.12.20150110.

  39. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2019). A survey of the recent architectures of deep convolutional neural networks. 1–60. arXiv Prepr arXiv190106032.

    Google Scholar 

  40. Zhuge, Y., Ning, H., Mathen, P., et al. (2020). Automated glioma grading on conventional MRI images using deep convolutional neural networks. Medical Physics, 47(7), 3044–3053. https://doi.org/10.1002/mp.14168.

    Google Scholar 

  41. Rani, S., & Kautish, S. (2018, June). Association clustering and time series based data mining in continuous data for diabetes prediction. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1209–1214). IEEE.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the General Directorate for Scientific Research and Technological Development (DGRSDT), Higher Education Ministry of Algeria, Algiers, Algeria. The authors would also like to thank Professor Abdelhakim Dinar from St. Peter’s Neurology, Albany, New York 12204, and also STIC Laboratory, Faculty of Technology, University of Tlemcen, Algeria.

Conflict of Interest

The authors have no conflict to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Ghouali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oukebdane, M.A. et al. (2021). COVIDz: Deep Learning for Coronavirus Disease Detection. In: Kautish, S., Peng, SL., Obaid, A.J. (eds) Computational Intelligence Techniques for Combating COVID-19. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-68936-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68936-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68935-3

  • Online ISBN: 978-3-030-68936-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics