Advertisement

Review of GIS Multi-Criteria Decision Analysis for Managed Aquifer Recharge in Semi-Arid Regions

Chapter
  • 134 Downloads

Abstract

Managed aquifer recharge (MAR) embeds techniques for purposefully increasing the recharge to confined or unconfined aquifers. For aquifers subject to freshwater extraction, MAR constitutes a central component for sustainability—particularly in semi-arid regions, where climate change and population growth drive water scarcity toward a complex societal problem. Geographic information systems (GIS) coupled with multi-criteria decision analysis (MCDA) can be used for MAR suitability mapping to identify suitable areas for implementation of MAR. In other words, GIS-MCDA aids decision-makers to effectively choose the appropriate locations, with the flexibility of incorporating local contingencies if needed. Although numerous applications of GIS-MCDA are reported in the literature, the important linkage between MAR technique selection and suitability mapping with GIS-MCDA is largely left unfocused. This chapter provides an updated overview of GIS-MCDA for MAR suitability mapping in semi-arid regions and exemplifies key features that depend on the MAR technique considered with subsequent influence on the methodology. The potential of suitability mapping is discussed along with shortcomings of this methodology. Lastly, directions for future research are hypothesized.

Keywords

GIS-MCDA MAR Aquifer Groundwater 

References

  1. Adem Esmail, B. and Geneletti, D. (2018) ‘Multi-criteria decision analysis for nature conservation: A review of 20 years of applications’, Methods in ecology and evolution. L. Dicks. British Ecological Society Cambridge, 9(1), pp. 42–53. doi:  https://doi.org/10.1111/2041-210X.12899.CrossRefGoogle Scholar
  2. Adham, M. I., et al. (2010). Study on groundwater recharge potentiality of Barind tract, Rajshahi District, Bangladesh using GIS and remote sensing technique. Journal of Geological Society of India, 75, 432–438.  https://doi.org/10.1007/s12594-010-0039-3.CrossRefGoogle Scholar
  3. Agostinetto, L., Dalla Venezia, F., & Gusmaroli, G. (2013). Managed aquifer recharge (MAR) demonstrative techniques for the quantitative restoration of the groundwater balance in the Vicenza upper plain. Veneto Agricoltura. Veneto Agricoltura Regional Agency for the Agriculture, Forestry and Agrifood Sectors. Retrieved from www.lifeaquor.org.
  4. Ahani Amineh, Z. B., Hashemian, S. J. A. D., & Magholi, A. (2017). Integrating Spatial Multi Criteria Decision Making (SMCDM) with Geographic Information Systems (GIS) for delineation of the most suitable areas for aquifer storage and recovery (ASR). Journal of Hydrology, 551, 577–595.  https://doi.org/10.1016/j.jhydrol.2017.05.031. Elsevier B.V.CrossRefGoogle Scholar
  5. Ahmadi, M. M., Mahdavirad, H. and Bakhtiari, B. (2017) ‘Multi-criteria analysis of site selection for groundwater recharge with treated municipal wastewater’, Water science and technology. IWA Publishing, London 76(4), pp. 909–919. doi:  https://doi.org/10.2166/wst.2017.273.CrossRefGoogle Scholar
  6. Alraggad, M., & Jasem, H. (2010). Managed aquifer recharge (MAR) through surface infiltration in the Azraq Basin/Jordan. Journal of Water Resource and Protection, 2, 1057–1070.  https://doi.org/10.4236/jwarp.2010.212125.CrossRefGoogle Scholar
  7. Anane, M., et al. (2008). Ranking suitable sites for soil aquifer treatment in Jerba Island (Tunisia) using remote sensing, GIS and AHP-multicriteria decision analysis. International Journal of Water, 4(1–2), 121–135.  https://doi.org/10.1504/IJW.2008.018151. Inderscience Publishers.CrossRefGoogle Scholar
  8. Andreo, B., et al. (2008). Methodology for groundwater recharge assessment in carbonate aquifers: Application to pilot sites in southern Spain. Hydrogeology Journal, 16(5), 911–925.  https://doi.org/10.1007/s10040-008-0274-5.CrossRefGoogle Scholar
  9. Bana e Costa, C. A., & Vansnick, J. C. (1997). Applications of the MACBETH approach in the framework of an additive aggregation model. Journal of Multi-Criteria Decision Analysis, 6(2), 107–114.  https://doi.org/10.1002/(SICI)1099-1360(199703)6:2<107::AID-MCDA147>3.0.CO;2-1. John Wiley & Sons, Ltd.CrossRefGoogle Scholar
  10. Beganskas, S., & Fisher, A. T. (2017). Coupling distributed stormwater collection and managed aquifer recharge: Field application and implications. Journal of Environmental Management, 200, 366–379.  https://doi.org/10.1016/j.jenvman.2017.05.058. Academic Press.CrossRefGoogle Scholar
  11. Casanova, J., Devau, N., & Pettenati, M. (2016). Managed aquifer recharge: An overview of issues and options. In A. J. Jakeman et al. (Eds.), Integrated groundwater management: Concepts, approaches and challenges (pp. 413–434). Cham, Switzerland: Springer.  https://doi.org/10.1007/978-3-319-23576-9_16.CrossRefGoogle Scholar
  12. Chandio, I. A., et al. (2013). GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: A review. Arabian Journal of Geosciences, 6, 3059–3066.  https://doi.org/10.1007/s12517-012-0568-8. Springer.CrossRefGoogle Scholar
  13. Chenini, I., Mammou, A., & El May, M. (2010). Groundwater recharge zone mapping using GIS-based multi-criteria analysis: A case study in Central Tunisia (Maknassy Basin). Water Resources Management., 24, 921.  https://doi.org/10.1007/s11269-009-9479-1.CrossRefGoogle Scholar
  14. Daher, W., et al. (2011). Karst and artificial recharge: Theoretical and practical problems. A preliminary approach to artificial recharge assessment. Journal of Hydrology, 408(3–4), 189–202.  https://doi.org/10.1016/j.jhydrol.2011.07.017. Elsevier B.V.CrossRefGoogle Scholar
  15. de Winnaar, G., Jewitt, G. P. W., & Horan, M. (2007). A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth, 32(15–18), 1058–1067.  https://doi.org/10.1016/j.pce.2007.07.009. Pergamon.CrossRefGoogle Scholar
  16. Delgado, M. G., & Sendra, J. B. (2004). Sensitivity analysis in multicriteria spatial decision-making: A review. Human and Ecological Risk Assessment, 10, 1173–1187.  https://doi.org/10.1080/10807030490887221. Taylor & Francis Group.CrossRefGoogle Scholar
  17. Dillon, P. (2005). Future management of aquifer recharge. Hydrogeology Journal, 13(1), 313–316.  https://doi.org/10.1007/s10040-004-0413-6.CrossRefGoogle Scholar
  18. Dillon, P., et al. (2009). Managed aquifer recharge : An introduction. Waterlines Report Series No. 13.Google Scholar
  19. Dillon, P., Escalante, E. F., & Tuinhof, A. (2012). Management of aquifer recharge and discharge processes and aquifer storage equilibrium groundwater governance - A global framework for action - GEF-FAO Groundwater Governance Thematic Paper 4, 16-22. The Hague, Netherlands: FAO, GEF, IAH, IHP, and World Bank. Google Scholar
  20. Dillon, P., et al. (2019). Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27(1), 1–30.  https://doi.org/10.1007/s10040-018-1841-z. Springer.CrossRefGoogle Scholar
  21. Dragoni, W., & Sukhija, B. S. (2008). Climate change and groundwater. In W. Dragoni & B. S. Sukhija (Eds.), Geological Society special publication. London: The Geological Society.  https://doi.org/10.1144/SP288.1.CrossRefGoogle Scholar
  22. Dutta, P. J. (2015). Assessment of groundwater potential in a part of the Vedganga watershed of Kolhapur District, Maharashtra, by a GIS-based bivariate statistical method. International Journal of Advancement in Earth and Environmental Sciences, 3(1), 22–29.Google Scholar
  23. Eckert, P., Irmscher, R., & Rohns, H. P. (2005). Dynamic processes during bank filtration and their impact on raw water quality. 5th International Symposium on Managed Aquifer Recharge, ISMAR 5. Berlin, Germany: UNESCO.Google Scholar
  24. Eisenführ, F., Weber, M., & Langer, T. (2010). Rational decision making (1st ed.). Berlin, Germany: Springer.CrossRefGoogle Scholar
  25. Escalante, E. F., et al. (2014). Economic assessment of opportunities for managed aquifer recharge techniques in Spain using an advanced geographic information system (GIS). Water (Switzerland), 6(7), 2021–2040.  https://doi.org/10.3390/w6072021.CrossRefGoogle Scholar
  26. Escalante, E. F., et al. (2016). MARSOL, demonstrating managed aquifer recharge as a solution to water scarcity and drought. European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration.Google Scholar
  27. Falkenmark, M., Lundqvist, J., & Widstrand, C. (1989). Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Natural Resources Forum, 13(4), 258–267.  https://doi.org/10.1111/j.1477-8947.1989.tb00348.x. Wiley.CrossRefGoogle Scholar
  28. Fashae, O., et al. (2014). Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Applied Water Science, 4, 19–38.  https://doi.org/10.1007/s13201-013-0127-9.CrossRefGoogle Scholar
  29. Fathi, S., Hagen, J. S., & Haidari, A. H. (2020). Synthesizing existing frameworks to identify the potential for managed aquifer recharge in a karstic and semi-arid region using GIS multi criteria decision analysis. Groundwater for Sustainable Development, 11, 100390.  https://doi.org/10.1016/j.gsd.2020.100390. Elsevier BV.CrossRefGoogle Scholar
  30. Feizizadeh, B., et al. (2014). A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers and Geosciences, 73, 208–221.  https://doi.org/10.1016/j.cageo.2014.08.001.CrossRefGoogle Scholar
  31. Feizizadeh, B., Kienberger, S., & Kamran, K. V. (2015). Sensitivity and uncertainty analysis approach for GIS-MCDA based economic vulnerability assessment. Journal for Geographic Information Science, 1, 81–89.  https://doi.org/10.1553/giscience2015s81.CrossRefGoogle Scholar
  32. Fenta, A., et al. (2015). Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeology Journal, 23, 195–206.  https://doi.org/10.1007/s10040-014-1198-x.CrossRefGoogle Scholar
  33. Fuentes, I., & Vervoort, R. W. (2020). Site suitability and water availability for a managed aquifer recharge project in the Namoi basin, Australia. Journal of Hydrology: Regional Studies, 27, 100657.  https://doi.org/10.1016/j.ejrh.2019.100657. Elsevier B.V.CrossRefGoogle Scholar
  34. Gale, I., & Dillon, P. (Eds.). (2005). Strategies for managed aquifer recharge (MAR) in semi-arid areas. Paris: United Nations Educational, Scientific and Cultural Organization (UNESCO).Google Scholar
  35. Gdoura, K., Anane, M., & Jellali, S. (2015). Geospatial and AHP-multicriteria analyses to locate and rank suitable sites for groundwater recharge with reclaimed water. Resources, Conservation and Recycling, 104, 19–30.  https://doi.org/10.1016/j.resconrec.2015.09.003. Elsevier.CrossRefGoogle Scholar
  36. Ghayoumian, J., et al. (2007). Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences, 30(2), 364–374.  https://doi.org/10.1016/j.jseaes.2006.11.002.CrossRefGoogle Scholar
  37. Gregory, R., et al. (2012). Structured decision making: A practical guide to environmental management choices (1st ed.). Hoboken, NJ: Wiley-Blackwell.  https://doi.org/10.1002/9781444398557.CrossRefGoogle Scholar
  38. Hutton Barron, F. (1992). Selecting a best multiattribute alternative with partial information about attribute weights. Acta Psychologica, 80(1–3), 91–103.  https://doi.org/10.1016/0001-6918(92)90042-C. Elsevier B.V.CrossRefGoogle Scholar
  39. IGRAC. (2007). Artificial recharge of groundwater in the world report. Delft. Retrieved August 4, 2017, from https://www.un-igrac.org/sites/default/files/resources/files/2008_IGRAC_GlobalMARInventory Report.pdf.
  40. IPCC. (2014). In R. K. Pachauri & L. A. Meyer (Eds.), IPCC, 2014: Climate change 2014: Synthesis report, contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.  https://doi.org/10.1017/CBO9781139177245.003.CrossRefGoogle Scholar
  41. Jeude, E. V. L. De (2016) Managed aquifer recharge : Opportunities and barriers. Universiteit Utrecht, Deltares Company.Google Scholar
  42. Kamangar, M. et al. (2019). A novel hybrid MCDM model to select a suitable location for implement groundwater recharge. Plant Archives 19(2):87–98.Google Scholar
  43. Karami, G. H., Bagheri, R., & Rahimi, F. (2016). Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran. Hydrogeology Journal, 24(8), 1981–1992.  https://doi.org/10.1007/s10040-016-1458-z.CrossRefGoogle Scholar
  44. Kattaa, B., Al-Fares, W., & Al Charideh, A. R. (2010). Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method. Journal of Environmental Management, 91(5), 1103–1110.  https://doi.org/10.1016/j.jenvman.2009.12.008.CrossRefGoogle Scholar
  45. Kottek, M., et al. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.  https://doi.org/10.1127/0941-2948/2006/0130. Schweizerbart’sche Verlagsbuchhandlung.CrossRefGoogle Scholar
  46. Krishnamurthy, J., et al. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884.  https://doi.org/10.1080/01431169608948744. Taylor & Francis Group.CrossRefGoogle Scholar
  47. Kurc, S. A., & Small, E. E. (2004). Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, Central New Mexico. Water Resources and Research, 40, 9305.  https://doi.org/10.1029/2004WR003068.CrossRefGoogle Scholar
  48. Ligmann-Zielinska, A., & Jankowski, P. (2008). A framework for sensitivity analysis in spatial multiple criteria evaluation. In Geographic information science (pp. 217–233). Berlin: Springer.  https://doi.org/10.1007/978-3-540-87473-7_14.CrossRefGoogle Scholar
  49. Lootsma, F. A. (1992). The REMBRANDT system for multi-criteria decision analysis via pairwise comparisons or direct rating: Technical Report 92-05, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, Netherlands.Google Scholar
  50. Lopez Mendez, B., et al. (2016). Aquifer Recharge. Retrieved August 10, 2017, from https://www.ruvival.de/wp-content/uploads/2017/06/Literature-Review-Aquifer-Recharge.pdf.
  51. Machiwal, D., Jha, M., & Mal, B. (2011). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management, 25, 1359–1386.  https://doi.org/10.1007/s11269-010-9749-y.CrossRefGoogle Scholar
  52. Malczewski, J. (1999). GIS and multicriteria decision analysis. Wiley. Retrieved November 16, 2018, from https://www.wiley.com/en-nl/GIS+and+Multicriteria+Decision+Analysis-p-9780471329442.
  53. Malczewski, J. (2000). On the use of weighted linear combination method in GIS: Common and best practice approaches. Transactions in GIS, 4, 5–22.  https://doi.org/10.1111/1467-9671.00035.CrossRefGoogle Scholar
  54. Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.  https://doi.org/10.1080/13658810600661508. Taylor & Francis.CrossRefGoogle Scholar
  55. Malczewski, J., & Rinner, C. (2015). Introduction to GIS-MCDA. In Advances in geographic information science (pp. 23–54). Heidelberg: Springer.  https://doi.org/10.1007/978-3-540-74757-4_2.CrossRefGoogle Scholar
  56. Moharir, K., Pande, C., Singh, S., Choudhari, P., Rawat, K., & Jeyakumar, L. (2019). Spatial interpolation approach-based appraisal of groundwater quality of arid regions. Aqua Journal, 68(6), 431–447.Google Scholar
  57. Mukherjee, P., Singh, C., & Mukherjee, S. (2012). Delineation of groundwater potential zones in arid region of India—A remote sensing and GIS approach. Water Resources Management, 26, 2643–2672.  https://doi.org/10.1007/s11269-012-0038-9.CrossRefGoogle Scholar
  58. Oikonomidis, D., Dimogianni, S., & Kazakis, N. (2015). A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology, 525, 197.  https://doi.org/10.1016/j.jhydrol.2015.03.056.CrossRefGoogle Scholar
  59. Pande, C. B., Moharir, K. N., Khadri, S. F. R., & Patil, S. (2018). Study of land use classification in the arid region using multispectral satellite images. Applied Water Science, 8(5), 1–11. ISSN 2190–5487.Google Scholar
  60. Pande, C. B., Moharir, K. N., Singh, S. K., & Varade, A. M. (2019). An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India. Environment, Development, and Sustainability, 22, 4867.  https://doi.org/10.1007/s10668-019-00409-1.CrossRefGoogle Scholar
  61. Rahman, M. A., et al. (2012). A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. Journal of Environmental Management, 99, 61–75.  https://doi.org/10.1016/j.jenvman.2012.01.003. Elsevier Ltd.CrossRefGoogle Scholar
  62. Russo, T. A., Fisher, A. T., & Lockwood, B. S. (2015). Assessment of managed aquifer recharge site suitability using a GIS and modeling. Groundwater, 53, 389.  https://doi.org/10.1111/gwat.12213.CrossRefGoogle Scholar
  63. Saatsaz, M., Sulaiman, W. N. A., & Shaharin Ebrahim, L. K. (2005). Development of an aquifer, storage and recovery (ASR) site selection suitability index in support of the Comprehensive Everglades restoration project. Journal of Environmental Hydrology, 13, 1–13.Google Scholar
  64. Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176.  https://doi.org/10.1016/0270-0255(87)90473-8. Pergamon.CrossRefGoogle Scholar
  65. Sallwey, J., et al. (2018). Suitability maps for managed aquifer recharge: A review of multi-criteria decision analysis studies. Environmental Reviews, 27(2), 138–150.  https://doi.org/10.1139/er-2018-0069. Canadian Science Publishing.CrossRefGoogle Scholar
  66. Saraf, A. K., & Choudhury, P. R. (1998). Integrated remote sensing and gis for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing, 19(10), 1825–1841.  https://doi.org/10.1080/014311698215018. Taylor & Francis Group.CrossRefGoogle Scholar
  67. Schenkerman, & Stan. (1994). Avoiding rank reversal in AHP decision-support models. European Journal of Operational Research, 74(3), 407–419. Retrieved July 31, 2020, from https://ideas.repec.org/a/eee/ejores/v74y1994i3p407-419.html. Elsevier.CrossRefGoogle Scholar
  68. Sener, E., Davraz, A., & Ozcelik, M. (2005). An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeology Journal, 13(5–6), 826–834.  https://doi.org/10.1007/s10040-004-0378-5.CrossRefGoogle Scholar
  69. Shaban, A., Khawlie, M., & Abdallah, C. (2005). Use of remote sensing and GIS to determine recharge potential zones: The case of occidental Lebanon. Hydrogeology Journal, 14(4), 433–443.  https://doi.org/10.1007/s10040-005-0437-6.CrossRefGoogle Scholar
  70. Stefan, C., & Ansems, N. (2018). Web-based global inventory of managed aquifer recharge applications. Sustainable Water Resources Management, 4(2), 153–162.  https://doi.org/10.1007/s40899-017-0212-6. Springer.CrossRefGoogle Scholar
  71. Steinel, A. (2012). Guideline for assessment and implementation of Managed Aquifer Recharge (MAR) in (semi-)arid regions Pre-feasibility study for infiltration of floodwater in the Amman-Zarqa and Azraq basins, Jordan, Bundesamt für Geowissenschaften und Rohstoffe. Jordan. Retrieved from http://www.bgr.bund.de/EN/Themen/Zusammenarbeit/TechnZusammenarb/Downloads/jordanien_MAR.pdf?__blob=publicationFile&v=1%5Cn; http://www.bgr.bund.de/EN/Themen/Zusammenarbeit/TechnZusammenarb/Projekte/Abgeschlossen/Asien/1076_2002-3510-1-52_Jordanien_GWAnreic.
  72. Tsangaratos, P., et al. (2017). Multi-criteria decision support system (DSS) for optimal locations of soil aquifer treatment (SAT) facilities. Science of the Total Environment, 603–604, 472–486.  https://doi.org/10.1016/j.scitotenv.2017.05.238.CrossRefGoogle Scholar
  73. Tuinhof, A. et al. (2012) Profit from storage the costs and benefits of water buffering. BGR (Federal Institute for Geosciences and Natural Resources), IGRAC, ACACIA, META, RAIN, BMZ, IFAD.Google Scholar
  74. UN. (2019). The sustainable development goals report 2019. New York: UN (The Sustainable Development Goals Report).  https://doi.org/10.18356/55eb9109-en.CrossRefGoogle Scholar
  75. UNESCO. (2005). Recharge systems for protecting and enhancing groundwater resources. In F. Luck, M. Jekel, & I. Johnson (Eds.), 5th International Symposium on Management of Aquifer Recharge (ISMAR5). Berlin, Germany: UNESCO. Retrieved May 9, 2017, from http://unesdoc.unesco.org/images/0014/001492/149210e.pdf.Google Scholar
  76. Valverde, J. P. B., et al. (2016). Application of a GIS multi-criteria decision analysis for the identification of intrinsic suitable sites in Costa Rica for the application of managed aquifer recharge (MAR) through spreading methods. Water (Switzerland), 8(9), 391.  https://doi.org/10.3390/w8090391.CrossRefGoogle Scholar
  77. Van Berkum, S. W. (2010) Assessing suitability for managed aquifer recharge by means of a GIS-application - case study for Kenya. Utrecht. Retrieved from http://www.hwm.wur.nl/NR/rdonlyres/94013C92-71C5-4350-942F-6C26BA40E5DA/152154/berkum.pdf.
  78. Wang, Y. M., & Elhag, T. M. S. (2006). An approach to avoiding rank reversal in AHP. Decision Support Systems, 42(3), 1474–1480.  https://doi.org/10.1016/j.dss.2005.12.002. North-Holland.CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Simona Stadpipe AS, R&D DepartmentStadlandetNorway
  2. 2.University of Bergen, Geophysical InstituteBergenNorway
  3. 3.University of Bergen, Bjerknes Centre for Climate ResearchBergenNorway
  4. 4.CIMA Research Foundation - International Centre on Environmental MonitoringSavonaItaly
  5. 5.Department of HydrogeologyHelmholtz-Zentrum für UmweltforschungLeipzigGermany

Personalised recommendations