Skip to main content

Using the Metro-Map Metaphor for Drawing Hypergraphs

  • Conference paper
  • First Online:
SOFSEM 2021: Theory and Practice of Computer Science (SOFSEM 2021)

Abstract

For a planar graph G and a set \(\varPi \) of simple paths in G, we define a metro-map embedding to be a planar embedding of G and an ordering of the paths of \(\varPi \) along each edge of G. This definition of a metro-map embedding is motivated by visual representations of hypergraphs using the metro-map metaphor. In a metro-map embedding, two paths cross in a so-called vertex crossing if they pass through the vertex and alternate in the circular ordering around it.

We study the problem of constructing metro-map embeddings with the minimum number of crossing vertices, that is, vertices where paths cross. We show that the corresponding decision problem is NP-complete for general planar graphs but can be solved efficiently for trees or if the number of crossing vertices is constant. All our results hold both in a fixed and variable embedding settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To avoid parallel edges, paths of length two with the appropriate modifications would do equally well.

References

  1. Argyriou, E., Bekos, M.A., Kaufmann, M., Symvonis, A.: On metro-line crossing minimization. J. Graph Algorithms Appl. 14(1), 75–96 (2010). https://doi.org/10.7155/jgaa.00199

    Article  MathSciNet  MATH  Google Scholar 

  2. Asquith, M., Gudmundsson, J., Merrick, D.: An ILP for the metro-line crossing problem. In: Proceedings 14th Computing Australasian Theory Symposium (CATS 2008), vol. 77, pp. 49–56. CRPIT (2008). https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV77Asquith.pdf

  3. Bast, H., Brosi, P., Storandt., S.: Efficient generation of geographically accurate transit maps. In: Proceedings 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2018), pp. 13–22 (2018). https://doi.org/10.1145/3274895.3274955

  4. Bläsius, T., Fink, S.D., Rutter, I.: Synchronized planarity with applications to constrained planarity problems. arXiv (2020). https://arxiv.org/abs/2007.15362

  5. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for hypergraphs. J. Discrete Algorithms 14, 248–261 (2012). https://doi.org/10.1016/j.jda.2011.12.009

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60313-1_145

    Chapter  Google Scholar 

  7. Fink, M., Pupyrev, S., Wolff, A.: Ordering metro lines by block crossings. J. Graph Algorithms Appl. 19(1), 111–153 (2015). https://doi.org/10.7155/jgaa.00351

    Article  MathSciNet  MATH  Google Scholar 

  8. Foo, B.: The memory underground. http://memoryunderground.com

  9. Fulek, R., Tóth, C.D.: Atomic embeddability, clustered planarity, and thickenability. In: Proceedings ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 2876–2895 (2020). https://doi.org/10.1137/1.9781611975994.175

  10. Honnorat, D.: The best movies of all time map (2009). http://www.dyblog.fr/index.php?2009/07/20/928-une-carte-des-250-meilleurs-films-de-tous-les-temps+www.dyblog.fr/index.php?2009/07/20/928-une-carte-des-250-meilleurs-films-de-tous-les-temps+, Accessed 8 Jun 2020

  11. Lengauer, T.: Hierarchical planarity testing algorithms. J. ACM 36(3), 474–509 (1989). https://doi.org/10.1145/65950.65952

  12. Nesbitt, K.V.: Getting to more abstract places using the metro map metaphor. In: Proceedings 8th International Conference Information Vision (IV 2004), pp. 488–493. IEEE (2004). https://doi.org/10.1109/IV.2004.1320189

  13. Nöllenburg, M.: An improved algorithm for the metro-line crossing minimization problem. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 381–392. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0_36

    Chapter  Google Scholar 

  14. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626–641 (2011). https://doi.org/10.1109/TVCG.2010.81

    Article  Google Scholar 

  15. Sandvad, E., Grønbæk, K., Sloth, L., Knudsen, J.L.: A metro map metaphor for guided tours on the Web: the Webvise guided tour system. In: Shen, V.Y., Saito, N., Lyu, M.R., Zurko, M.E. (eds.) Proceedings 10th International World Wide Web Conference (WWW 2001), pp. 326–333. ACM (2001). https://doi.org/10.1145/371920.372079

  16. Shahaf, D., Yang, J., Suen, C., Jacobs, J., Wang, H., Leskovec, J.: Information cartography: Creating zoomable, large-scale maps of information. In: Proceedings 19th ACM SIGKDD Conference. Knowledge Discovery and Data Mining (KDD), pp. 1097–1105 (2013). https://doi.org/10.1145/2487575.2487690

  17. Stott, J.M., Rodgers, P., Burkhard, R.A., Meier, M., Smis, M.T.J.: Automatic layout of project plans using a metro map metaphor. In: Proceedings 9th International Conference Information Vision (IV 2005), pp. 203–206. IEEE (2005). https://doi.org/10.1109/IV.2005.26

  18. Verkehrsunternehmensverbund Mainfranken. Liniennetz Würzburger Straenbahn (2019). https://www.wvv.de/de/media/downloads/downloadcenter/hauptnavigation/mobilitaet/liniennetz/2019-11-01-liniennetzplan-busse-und-strabas_a3.pdf, Accessed 8 Jun 2020

Download references

Acknowledgments

We thank the organizers and the other participants of the 2017 Dagstuhl seminar “Scalable Set Visualization”, where this work started, in particular Robert Baker, Nan Cao, and Yifan Hu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frank, F. et al. (2021). Using the Metro-Map Metaphor for Drawing Hypergraphs. In: Bureš, T., et al. SOFSEM 2021: Theory and Practice of Computer Science. SOFSEM 2021. Lecture Notes in Computer Science(), vol 12607. Springer, Cham. https://doi.org/10.1007/978-3-030-67731-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67731-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67730-5

  • Online ISBN: 978-3-030-67731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics