Skip to main content

Automated Integration of Genomic Metadata with Sequence-to-Sequence Models

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track (ECML PKDD 2020)

Abstract

While exponential growth in public genomic data can afford great insights into biological processes underlying diseases, a lack of structured metadata often impedes its timely discovery for analysis. In the Gene Expression Omnibus, for example, descriptions of genomic samples lack structure, with different terminology (such as “breast cancer”, “breast tumor”, and “malignant neoplasm of breast”) used to express the same concept. To remedy this, we learn models to extract salient information from this textual metadata. Rather than treating the problem as classification or named entity recognition, we model it as machine translation, leveraging state-of-the-art sequence-to-sequence (seq2seq) models to directly map unstructured input into a structured text format. The application of such models greatly simplifies training and allows for imputation of output fields that are implied but never explicitly mentioned in the input text.

We experiment with two types of seq2seq models: an LSTM with attention and a transformer (in particular GPT-2), noting that the latter outperforms both the former and also a multi-label classification approach based on a similar transformer architecture (RoBERTa). The GPT-2 model showed a surprising ability to predict attributes with a large set of possible values, often inferring the correct value for unmentioned attributes. The models were evaluated in both homogeneous and heterogenous training/testing environments, indicating the efficacy of the transformer-based seq2seq approach for real data integration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Companies currently offer complete genome sequencing for under 600USD (e.g. https://www.veritasgenetics.com/myGenome) with costs expected to fall.

  2. 2.

    NCBI E-utilities [17] provide a federated search engine supporting information on experimental protocols, but lack functionality regarding characteristics of the sample, such as species of origin, age, gender, tissue, mutations, disease state, etc.

  3. 3.

    Information regarding the submission of high-throughput sequences is provided at https://www.ncbi.nlm.nih.gov/geo/info/seq.html.

  4. 4.

    The data model centers on the item of experimental data, with views describing biological elements, technology used, management aspects, and extraction parameters.

  5. 5.

    K562 is a widely known cell line originally extracted from tissue belonging to a 53 year-old woman affected by myeloid leukemia.

  6. 6.

    https://github.com/DEIB-GECO/GEO-metadata-translator.

  7. 7.

    http://cistrome.org/db/#/bdown.

  8. 8.

    https://www.encodeproject.org/.

  9. 9.

    https://github.com/huggingface/transformers.

  10. 10.

    https://github.com/ThilinaRajapakse/simpletransformers.

  11. 11.

    Pre-processing was motivated by the fact that important character ngrams often appear in sequences separated by special characters, e.g., “RH_RRE2_14028”.

  12. 12.

    https://colab.research.google.com/.

  13. 13.

    The input in this case was: microRNA profile of case NPC362656 survival status (1-death,0-survival): 0; gender (1-male,2-female): 1; age (years): 56; ...

References

  1. Abadi, M., Agarwal, A., Barham, P., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Barrett, T., Wilhite, S.E., Ledoux, P., et al.: NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41(D1), D991–D995 (2012)

    Article  Google Scholar 

  3. Bernasconi, A., Canakoglu, A., Masseroli, M., et al.: META-BASE: a novel architecture for large-scale genomic metadata integration. IEEE/ACM Trans. Comput. Biol. Bioinform. https://doi.org/10.1109/TCBB.2020.2998954

  4. Bernasconi, A., Canakoglu, A., Masseroli, M., et al.: The road towards data integration in human genomics: players, steps and interactions. Briefings in Bioinform. 22(1), 30–44 (2021). https://doi.org/10.1093/bib/bbaa080

    Article  Google Scholar 

  5. Bernasconi, A., Ceri, S., Campi, A., Masseroli, M.: Conceptual modeling for genomics: building an integrated repository of open data. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 325–339. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2_26

  6. Bodenreider, O.: Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearbook of Medical Informatics, p. 67 (2008)

    Google Scholar 

  7. Canakoglu, A., Bernasconi, A., Colombo, A., et al.: GenoSurf: metadata drivensemantic search system for integrated genomic datasets. Database 2019 (2019)

    Google Scholar 

  8. Davis, C.A., Hitz, B.C., Sloan, C.A., et al.: The encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 46(D1), D794–D801 (2017)

    Article  Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., et al.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  10. Ellis, S.E., Collado-Torres, L., Jaffe, A., et al.: Improving the value of public RNA-seq expression data by phenotype prediction. Nucleic Acids Res. 46(9), e54–e54 (2018)

    Article  Google Scholar 

  11. Galeota, E., Kishore, K., Pelizzola, M.: Ontology-driven integrative analysis of omics data through onassis. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  12. Giles, C.B., Brown, C.A., Ripperger, M., et al.: ALE: automated label extraction from GEO metadata. BMC Bioinform. 18(14), 509 (2017)

    Article  Google Scholar 

  13. Guo, Z., Tzvetkova, B., Bassik, J.M., et al.: RNASeqMetaDB: a database and web server for navigating metadata of publicly available mouse RNA-Seq datasets. Bioinformatics 31(24), 4038–4040 (2015)

    Google Scholar 

  14. Hadley, D., Pan, J., El-Sayed, O., et al.: Precision annotation of digital samples in NCBI’s Gene Expression Omnibus. Sci. Data 4, 170125 (2017)

    Article  Google Scholar 

  15. Hong, E.L., Sloan, C.A., Chan, E.T., et al.: Principles of metadata organization at the ENCODE data coordination center. Database 2016 (2016)

    Google Scholar 

  16. Huang, C.C., Lu, Z.: Community challenges in biomedical text mining over 10 years: success, failure and the future. Briefings Bioinform. 17(1), 132–144 (2016)

    Article  Google Scholar 

  17. Kans, J.: Entrez direct: E-utilities on the unix command line. In: Entrez Programming Utilities Help [Internet]. National Center for Biotechnology Information (US) (2020)

    Google Scholar 

  18. Kundaje, A., Meuleman, W., Ernst, J., et al.: Integrative analysis of 111 reference human epigenomes. Nature 518(7539), 317 (2015)

    Article  Google Scholar 

  19. Li, J., Tseng, C.S., Federico, A., et al.: SFMetaDB: a comprehensive annotation of mouse RNA splicing factor RNA-Seq datasets. Database 2017 (2017)

    Google Scholar 

  20. Li, Z., Li, J., Yu, P.: GEOMetaCuration: a web-based application for accurate manual curation of Gene Expression Omnibus metadata. Database J. Biol. Databases Curation 2018 (2018)

    Google Scholar 

  21. Liu, Y., Ott, M., Goyal, N., et al.: RoBERTa: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  22. Lonsdale, J., Thomas, J., Salvatore, M., et al.: The genotype-tissue expression (GTEx) project. Nat. Genet. 45(6), 580 (2013)

    Article  Google Scholar 

  23. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421 (2015)

    Google Scholar 

  24. Musen, M.A., Sansone, S.A., Cheung, K.H., et al.: CEDAR: semantic web technology to support open science. In: Companion Proceedings of the The Web Conference 2018, pp. 427–428. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  25. Posch, L., Panahiazar, M., Dumontier, M., et al.: Predicting structured metadata from unstructured metadata. Database 2016 (2016)

    Google Scholar 

  26. Radford, A., Wu, J., Child, R., et al.: Language models are unsupervised multitask learners. OpenAI Blog. 1(8), 9 (2019)

    Google Scholar 

  27. Genomes Project Consortium: A global reference for human genetic variation. Nature 526(7571), 68 (2015)

    Article  Google Scholar 

  28. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  29. Wang, Z., Lachmann, A., Ma’ayan, A.: Mining data and metadata from the Gene Expression Omnibus. Biophys. Rev. 11(1), 103–110 (2019)

    Article  Google Scholar 

  30. Wang, Z., Monteiro, C.D., Jagodnik, K.M., et al.: Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nature Commun. 7(1), 1–11 (2016)

    Google Scholar 

  31. Weinstein, J.N., Collisson, E.A., Mills, G.B., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113 (2013)

    Article  Google Scholar 

  32. Zaveri, A., Hu, W., Dumontier, M.: MetaCrowd: crowdsourcing biomedical metadata quality assessment. Hum. Comput. 6(1), 98–112 (2019)

    Article  Google Scholar 

  33. Zheng, R., Wan, C., Mei, S., et al.: Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 47(D1), D729–D735 (2018)

    Article  Google Scholar 

  34. Zhu, Y., Davis, S., Stephens, R., et al.: GEOmetadb: powerful alternative search engine for the Gene Expression Omnibus. Bioinformatics 24(23), 2798–2800 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the ERC Advanced Grant 693174 GeCo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Carman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cannizzaro, G., Leone, M., Bernasconi, A., Canakoglu, A., Carman, M.J. (2021). Automated Integration of Genomic Metadata with Sequence-to-Sequence Models. In: Dong, Y., Ifrim, G., Mladenić, D., Saunders, C., Van Hoecke, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12461. Springer, Cham. https://doi.org/10.1007/978-3-030-67670-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67670-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67669-8

  • Online ISBN: 978-3-030-67670-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics