Skip to main content

The Breeding of Phalaenopsis Hybrids

  • Chapter
  • First Online:
The Orchid Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 582 Accesses

Abstract

The lush and exuberant subtropical forests of South East Asia are home to about 60 native species of Phalaenopsis orchids. Results from research into evolutionary and reproductive relationships within this genus are reported with the hope that their understanding may assist the selection of species as parents during breeding programs. The species in sub-genus Phalaenopsis have been used frequently for commercial breeding and trading. Polyploid cultivars with superior horticultural traits are the mainstream, and are the product of either the natural production of unreduced gametes or the result of artificial production during the process of cross hybridization. Meiocyte analysis may provide valuable information regarding the formation of unreduced gametes and subsequent use in breeding for polyploidization. Artificial induction of polyploidy may be brought about by chemical treatments or as an unintended result of mutations during the tissue culture process. Proper storage of orchid pollinia in sub-zero freezing temperatures may extend their viability until the moment they are required for cross hybridization. This chapter elaborates into these methods and strategies with the hope that they might contribute to new orchid breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelgadir HA, Johnson SD, Van Staden J (2012) Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). S Afr J Bot 79:132–139

    Article  Google Scholar 

  • Arends JC (1970) Cytological observations on genome homology in eight interspecific hybrids of Phalaenopsis. Genetica 41:88–100

    Article  Google Scholar 

  • Barnabas B, Kovacs G, Abranyi A, Pfahler P (1988) Effect of pollen storage by drying and deep-freezing in the expression of different agronomic traits in maize (Zea mays L.). Euphytica 39:221–225

    Article  Google Scholar 

  • Bellusci F, Musacchio A, Stabile R, Pellegrino G (2010) Differences in pollen viability in relation to different deceptive pollination strategies in Mediterranean orchids. Ann Bot 106:769–774

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization: caught in the act. Trends Plant Sci 13:437–443

    Article  CAS  PubMed  Google Scholar 

  • Bolaños-Villegas P, Chen FC (2007) Cytological identification of chromosomal rearrangements in Doritaenopsis and Phalaenopsis. J Int Coop 2:1–11

    Google Scholar 

  • Bolaños-Villegas P, Chin SW, Chen FC (2008) Meiotic chromosome behavior and capsule setting in Doritaenopsis hybrids. J Amer Soc Hortic Sci 133:107–116

    Article  Google Scholar 

  • Bou Daher F, Chebli Y, Geitmann A (2009) Optimization of conditions for germination of cold-stored Arabidopsis thaliana pollen. Plant Cell Rep 28:347–357

    Article  CAS  PubMed  Google Scholar 

  • Brownfield L, Köhler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Chen WH, Chen TM, Fu YM, Hsieh RM, Chen WS (1998) Studies on somaclonal variation in Phalaenopsis. Plant Cell Rep 18:7–13

    Article  Google Scholar 

  • Christenson EA (2001) Phalaenopsis-A Monograph. Timber Press, Portland, Oregon, p 330

    Google Scholar 

  • Cohen E, Lavi U, Spiegel-Roy P (1989) Papaya pollen viability and storage. Sci Hortic 40:317–324

    Article  Google Scholar 

  • Dafni A, Firmage D (2002) Pollen viability and longevity: practical, ecological, and evolutionary implications. Plant Syst Evol 222:113–132

    Article  Google Scholar 

  • Deng Z, Harbaugh BK (2004) Technique for in vitro pollen germination and short-term pollen storage in caladium. HortScience 39:365–367

    Article  Google Scholar 

  • De Storme N, Copenhaver GP, Geelen D (2012) Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol 160:1808–1826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vries DP, Dubois LAM (1983) Pollen and pollination experiments. X. The effect of repeated pollination on fruit and seed-set in crosses between the hybrid tea-rose CVS. Sonia and Ilona. Euphytica 32:685–689

    Article  Google Scholar 

  • Duttke S, Zoulias N, Kim M (2012) Mutant flower morphologies in the wind orchid, a novel orchid model species. Plant Physiol 158:1542–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer AF (1979) Investigating Chromosomes. Edward Arnold Pub, London, p 430

    Google Scholar 

  • El-Homosany AA, Sayed HA (2015) Effect of low temperature and cryopreservation on in vitro pollen germination of some olive cultivars. Am-Euras. J Agric Environ Sci 15:1803–1808

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The Principles of Pollination Ecology, 3rd edn. Pergamon Press, Oxford, England, p 244

    Google Scholar 

  • Fayos I, Mieulet D, Petit J, Meunier AC, Perin C, Nicolas A, Guiderdoni E (2019) Engineering meiotic recombination pathways in rice. Plant Biotechnol J 17:1–16

    Article  CAS  Google Scholar 

  • Hanna WW, Towill LE (1995) Long-term pollen storage. Plant Breed Rev 13:179–199

    Google Scholar 

  • Hong TD, Ellis RH, Buitink J, Walters C, Hoekstra FA, Crane J (1999) A model of the effect of temperature and moisture on pollen longevity in air-dry storage environments. Ann Bot 83:167–173

    Article  Google Scholar 

  • Huang JZ, Lin CP, Cheng TC, Huang YW, Tsai YJ, Cheng SY, Chen YW, Lee CP, Chung WC, Chang BCH, Chin SW, Lee CY, Chen FC (2016) The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 4:e2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughdahl JD, Morejohn LC (1993) Rapid and reversible high-affinity binding to dinitroaniline herbicide oryzalin to tubulin from Zea mays L. Plant Physiol 102:725–740

    Article  Google Scholar 

  • Kamemoto H, Amore DT, Kuehnle A (1999) Breeding Dendrobium Orchids in Hawaii. University of Hawaii Press, Honolulu, p 166

    Google Scholar 

  • Kao YY, Chang SB, Lin TY, Hsieh CH, Chen YH, Chen WH, Chen CC (2001) Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann Bot 87:387–395

    Article  CAS  Google Scholar 

  • Kulus D, Zalewska M (2014) Cryopreservation as a tool used in long-term storage of ornamental species- A review. Sci Hortic 168:88–107

    Article  Google Scholar 

  • Lee TD (1988) Patterns of Fruit and Seed Production. In: Doust JL, Doust LL (eds) Plant Reproductive Ecology—Patterns and Strategies. Oxford University Press, Oxford, pp 179–202

    Google Scholar 

  • Lee YI, Tseng YF, Lee YC, Chung MC (2020) Chromosome constitution and nuclear DNA content of Phalaenopsis hybrids. Sci Hortic 262:109089

    Article  CAS  Google Scholar 

  • Levin DA (2002) The Role of Chromosomal Change in Plant Evolution. Oxford Univ Press, New York, p 230

    Google Scholar 

  • Lin CC, Chen YH, Chen WH, Chen CC, Kao YY (2005) Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Bot Bull Academia Sinica 46:339–345

    CAS  Google Scholar 

  • Lin TP (1977) Native Orchids of Taiwan, Southern Materials Ctr., Taipei, pp 353

    Google Scholar 

  • Lloyd DG, Schoen DJ (1992) Self- and cross-fertilization in plants. I Functional dimensions. Int J Plant Sci 153:358–369

    Article  Google Scholar 

  • Lora J, Pérez de Oteyza MA, Fuentetaja P, Hormaza JI (2006) Low temperature storage and in vitro germination of cherimoya (Annona cherimola Mill.) pollen. Sci Hortic 108:91–94

    Article  CAS  Google Scholar 

  • Lyakh VA, Soroka AI, Kalinova MG (1998) Pollen storage at low temperature as a procedure for the improvement of cold tolerance in spring rape, Brassica napus L. Plant Breed 117:389–391

    Article  Google Scholar 

  • Ma H (2006) A molecular portrait of Arabidopsis meiosis. In: Somerville CR and Meyerowitz EM (eds). The Arabidopsis Book 4: e0095

    Google Scholar 

  • Marks TR, Seaton PT, Pritchard HW (2014) Desiccation tolerance, longevity, and seed-siring ability of entomophilous pollen from UK native orchid species. Ann Bot 114:561–569

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Gómez P, Gradziel TM, Ortega E, Dicenta F (2000) Short-term storage of almond pollen. HortScience 35:1151–1152

    Article  Google Scholar 

  • Martínez-Gómez P, Gradziel TM, Ortega E, Dicenta F (2002) Low temperature storage of almond pollen. HortScience 37:691–692

    Article  Google Scholar 

  • Masum-Akond ASMG, Pounders CT, Blythe EK, Wang XW (2012) Longevity of Crape Myrtle pollen stored at different temperatures. Sci Hortic 139:53–57

    Article  Google Scholar 

  • Mesnoua M, Roumani M, Salem A (2018) The effect of pollen storage temperatures on pollen viability, fruit set and fruit quality of six date palm cultivars. Sci Hortic 236:279–283

    Article  Google Scholar 

  • Metz C, Nerd A, Mizrahi Y (2000) Viability of pollen of two fruit crop cacti of the genus Hylocereus is affected by temperature and duration of storage. HortScience 35:22–24

    Article  Google Scholar 

  • Oliveira VM, Forni-Martins ER, Magalhães PM, Alves MN (2004) Chromosomal and morphological studies of diploid and polyploid cytotypes of Stevia rebaudiana (Bertoni) Bertoni (Eupatorieae, Asteraceae). Genet Mol Biol 27:215–222

    Article  Google Scholar 

  • Pacini E, Guarnieri M, Nepi M (2006) Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma 228:73–77

    Article  CAS  PubMed  Google Scholar 

  • Parton E, Vervaeke I, Delen R, Vandenbussche B, Deroose R, De Proft M (2002) Viability and storage of bromeliad pollen. Euphytica 125:155–161

    Article  CAS  Google Scholar 

  • Pritchard HW, Prendergast FG (1989) Factors influencing the germination and storage characteristics of orchid pollen. In: Pritchard HW (ed) Modern Methods in Orchid Conservation: the Role of Physiology, Ecology, and Management. Cambridge Univ Press, England, pp 1–16

    Chapter  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The Natural History of Pollination. Timber Press, Portland, Oregon, p 479

    Google Scholar 

  • Ren R, Li Z, Li B, Xu J, Jiang X, Liu Y, Zhang K (2019) Changes of pollen viability of ornamental plants after long-term preservation in a cryopreservation pollen bank. Cryobiology 89:14–20

    Article  PubMed  Google Scholar 

  • Richards AJ (1986) Plant Breeding Systems. George Allen and Unwin, London, p 529

    Google Scholar 

  • Sedgley M, Harbard J (1993) Pollen storage and breeding system in relation to controlled pollination of four species of Acacia (Leguminosae: Mimosoideae). Aust J Bot 41:601–609

    Article  Google Scholar 

  • Schmidt C, Schindele P, Puchta H (2019) From gene editing to genome engineering: restructuring plant chromosomes via CRISPR/Cas. aBIOTECH 1:21–31

    Google Scholar 

  • Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115

    Article  CAS  PubMed  Google Scholar 

  • Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962

    Article  CAS  PubMed  Google Scholar 

  • Sorkheh K, Shiran B, Rouhi V, Khodambashi M (2011) Influence of temperature on the in vitro pollen germination and pollen tube growth of various native Iranian almonds (Prunus L. spp.) species. Trees 25:809–822

    Article  Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Evol Syst 12:253–279

    Article  Google Scholar 

  • Tang SS, Huang YL, Fu X (2018) A comparative study on the pollen viability and storage conditions of the nuclear and non-nuclear varieties. Trends Hortic 15–18

    Google Scholar 

  • Tanaka H, Tapscott SJ, Trask BJ, Yao MC (2002) Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells. Proc Natl Acad Sci USA 99:8772–8777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towill LE (1985) Low temperature and freeze-/vacuum-drying preservation of pollen. In: Kartha KK (ed) Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton, pp 171–198

    Google Scholar 

  • Tsai CC, Huang SC, Chou CH (2005) Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) based on the internal transcribed spacer of the nuclear ribosomal DNA. Plant Syst Evol 256:1–16

    Article  CAS  Google Scholar 

  • Tsai CC, Chiang YC, Huang SC, Chen CH, Chou CH (2010) Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) on the basis of plastid and nuclear DNA. Plant Syst Evol 228:77–98

    Article  CAS  Google Scholar 

  • Tsao JY (2003) Phylogenetic Analysis of Phalaenopsis Species Based on Plastid matK and rbcL Sequences. Master Thesis, Department of Tropical Agriculture and International Cooperation, National Pingtung Univ Sci &Technol, Taiwan. 111 pp

    Google Scholar 

  • Younis A, Hwang YJ, Lim KB (2014) Exploitation of induced 2n-gametes for plant breeding. Plant Cell Rep 33:215–223

    Article  CAS  PubMed  Google Scholar 

  • Vaknin Y, Disikowitch D (2000) Effects of short-term storage on germinability of pistachio pollen. Plant Breed 119:347–350

    Article  Google Scholar 

  • Vaknin Y, Mills D, Benzioni A (2003) Pollen production and pollen viability in male jojoba plants. Indust Crops Product 18:117–123

    Article  Google Scholar 

  • van der Walt ID, Littlejohn GM (1996) Storage and viability testing of Protea pollen. J Amer Soc Hortic Sci 121:804–809

    Article  Google Scholar 

  • Wang LM, Wu JF, Chen JZ, Fu DW, Zhang CY, Cai CH, Ou LG (2015) A simple pollen collection, dehydration, and long-term storage method for litchi (Litchi chinensis Sonn.). Sci Hortic 188:78–83

    Article  Google Scholar 

  • Wang ML, Hsu CM, Chang LC, Wang CS, Su TH, Huang YJJ, Jiang L, Jauh GY (2004) Gene expression profiles of cold-stored and fresh pollen to investigate pollen germination and growth. Plant Cell Physiol 45:1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Copenhaver GP (2018) Meiotic recombination: mixing it up in plants. Annu Rev Plant Biol 69:577–609

    Article  CAS  PubMed  Google Scholar 

  • Yates IE, Sparks D, Connor K, Towill L (1991) Reduced pollen moisture simplifies long-term storage of pecan pollen. J Amer Soc Hortic Sci 116:430–434

    Article  Google Scholar 

  • Yuan SC, Chin SW, Lee CY, Chen FC (2018) Phalaenopsis pollinia storage at sub-zero temperature and its pollen viability assessment. Bot Stud 59:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Yukawa T, Kita K, Handa T, Hidayat T, Ito M (2005) Molecular phylogenetics of Phalaenopsis (Orchidaceae) and allied genera: Re-evaluation of generic concepts. Acta Phytotaxonomica et Geobotanica 56:141–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fure-Chyi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, SC., Bolaños-Villegas, P., Tsao, CY., Chen, FC. (2021). The Breeding of Phalaenopsis Hybrids. In: Chen, FC., Chin, SW. (eds) The Orchid Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-66826-6_2

Download citation

Publish with us

Policies and ethics