Skip to main content

An IoT-Based Autonomous Robot System for Maize Precision Agriculture Operations in Sub-Saharan Africa

  • Chapter
  • First Online:
Emergence of Cyber Physical System and IoT in Smart Automation and Robotics

Abstract

The importance of agriculture to the economic growth in sub-Saharan Africa suffers from several challenges. One of the major problems faced by the sector is the lack of suitable technology to optimize yield and profit to reduce the reliance of farmers on manual techniques of farming which is accompanied by drudgery, wastage, and low yields. Precision agriculture has been applied to maximize agricultural outputs while minimizing inputs. This study presents the design of an Internet of things (IoT)-based autonomous robot system that can be used for precision agricultural operations in maize crop production. The robot consists of a camera for remotely monitoring of the environment and a tank incorporated with a liquid level sensor which can be used for irrigation and herbicide application. The real-time feed from the camera as well as the output from the liquid level sensor is accessed from a cloud database via a Web application. This system can be adopted for improved crop production which in turn will increase crop yield, profit, and revenue generated from agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adejuwon, K. D. (2018). Internet of things and smart city development: Is Nigeria leveraging on emerging technologies to improve efficiency in public service delivery? Journal of Public Administrative Finance Law, 13, 7–20.

    Google Scholar 

  • Amadin, F. I., Egwuatu, J. O., Obienu, A. C., & Osazuwa, W. A. (2017). Internet of things (IoT ): Implications of a wide scale use in Nigeria. Computer Information System Devices and Informatics Allied Research Journal, 8(1), 95–102.

    Google Scholar 

  • Aminuddin, N. S., Ibrahim, M. M., Ali, N. M., Radzi, S. A., Saad, W. H. M., & Darsono, A. M. (2017). A new approach to highway lane detection by using hough transform technique. Journal of Information Communication Technology, 16(2), 244–260.

    Article  Google Scholar 

  • Ammani, A. A. (2015). Trend analysis of maize production and productivity in Nigeria. Journal of Basic and Applied Research International, 2(3), 95–103.

    Google Scholar 

  • Arce, F., Zamora, E., Hernández, G., & Sossa, H. (2017). Efficient lane detection based on artificial neural networks. ISPRS Annals of the Photogrammetry Remote Sensing and Spatial Information Sciences, 4(4W3), 13–19.

    Google Scholar 

  • Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E.-H. M. (2019). Internet-of-things (IoT) based smart agriculture: Towards making the fields talk. IEEE Access Specification Section New Technology Smart Farming 4.0 Research Challenges Opportunities, 7, 129551–129583.

    Google Scholar 

  • Banu, S. (2015). Precision agriculture: Tomorrow’s technology for today’s farmer. Journal of Food Processing Technology, 06(08), 8–13.

    Google Scholar 

  • Beluhova-Uzunova, R., & Dunchev, D. (2019). Precision farming—Concepts and perspectives. Problems of Agricultural Economics, 360(3), 142–155.

    Google Scholar 

  • Dubey, S., Singh, P., Yadav, P., & Singh, K. K. (2020). Household waste management system using IoT and machine learning. Procedia Computer Science, 167, 1950–1959.

    Article  Google Scholar 

  • Dupont, C., Vecchio, M., Pham, C., Diop, B., Dupont, C., & Koffi, S. (2018). An open IoT platform to promote eco-sustainable innovation in Western Africa: Real urban and rural testbeds. Wireless Communication Mobile Computing, 2018, 1–17.

    Article  Google Scholar 

  • Ewetan, O. O., Adebisi, F., & Emmanuel, O. (2017). Agricultural output and economic growth in Nigeria. Journal of African Research Busines Technology, 2017(2017), 1–11.

    Google Scholar 

  • Ishengoma, F., & Athuman, M. (2018). Internet of things to improve agriculture in Sub Sahara Africa—A case study. International Journal of Advertising Science and Research Engineering, 4(6), 8–11.

    Google Scholar 

  • Iwayemi, A. (2018). Internet of things: Implementation challenges in Nigeria. American Journal of Engineering Research, 7(12), 105–115.

    Google Scholar 

  • Ji, C., Lu, H., Ji, C., & Yan, J. (2015). An IoT and mobile cloud based architecture for smart planting. In: 3rd international conference on machinery, materials and information technology applications (ICMMITA 2015) (pp. 1001–1005).

    Google Scholar 

  • Li, Z., Wang, J., Higgs, R., Zhou, L., & Yuan, W. (2017). Design of an intelligent management system for agricultural greenhouses based on the internet of things. In Proceedings of 2017 IEEE international conference on computer science engineering IEEE/IFIP international conference embedded ubiquitous computing CSE EUC 2017, vol. 2 (pp. 154–160).

    Google Scholar 

  • Li, M., Li, Y., & Jiang, M. (2018). Lane detection based on connection of various feature extraction methods. Advanced Multimedia, 2018, 1–13.

    Article  Google Scholar 

  • Nandhini, S., Bhrathi, S., Goud, D. D., & Krishna, K. P. (2019). Smart agriculture IOT with cloud computing, fog computing and edge computing. International Journal of Engineering Advanced Technology, 9(2), 3578–3582.

    Article  Google Scholar 

  • Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International Journal of Recent Technology Engineering, 7(5), 98–102.

    Google Scholar 

  • Nayyar, A., & Puri, V. (2016a, March). A review of Arduino board's, Lilypad’s & Arduino shields. In 2016 3rd international conference on computing for sustainable global development (INDIACom) (pp. 1485–1492). IEEE.

    Google Scholar 

  • Nayyar, A., & Puri, V. (2016b, September). Smart farming: IoT based smart sensors agriculture stick for live temperature and moisture monitoring using Arduino, cloud computing & solar technology. In Proceedings of the international conference on communication and computing systems (ICCCS-2016) (pp. 9781315364094-121).

    Google Scholar 

  • Ndubuaku, M., & Okereafor, D. (2015) Internet of things for Africa : Challenges and opportunities. In 2015 international conference on cyberspace governance (pp. 23–31).

    Google Scholar 

  • Ndubuaku, M., & Okereafor, D. (2015). State of internet of things deployment in Africa and its future: The Nigerian scenario. African Journal of Information Communication, 15, 114–119.

    Google Scholar 

  • Olaniyi, O. M., Buhari, U. U., Bala, J. A., Arulogun, O. T., & Kaa, T. O. (2019). Remote monitoring and control system for poultry feed dispensing. In 2019 IEEE 1st international conference on mechatronics, automation and cyber-physical computer system.

    Google Scholar 

  • Padikkapparambil, J., Ncube, C., Singh, K. K., & Singh, A. (2020). Internet of things technologies for elderly health-care applications. In Emergence of pharmaceutical industry growth with industrial IoT approach (pp. 217–243). Academic Press.

    Google Scholar 

  • Pavithra, G. (2018). Intelligent monitoring device for agricultural greenhouse using IOT. Journal of Agricultural Science and Food Research, 9(2), 2–5.

    Google Scholar 

  • Shi, X., et al. (2019). State-of-the-art internet of things in protected agriculture. Sensors, 19, 1–24.

    Article  Google Scholar 

  • Singh, A. K., Firoz, N., Tripathi, A., Singh, K. K., Choudhary, P., & Vashist, P. C. (2020a). Internet of things: From hype to reality. An Industrial IoT Approach for Pharmaceutical Industry Growth, 2, 191.

    Article  Google Scholar 

  • Singh, M., Sachan, S., Singh, A., & Singh, K. K. (2020b). Internet of things in pharma industry: Possibilities and challenges. In Emergence of pharmaceutical industry growth with industrial IoT approach (pp. 195–216). Academic Press.

    Google Scholar 

  • Tanwar, S. (2020a). Fog computing for healthcare 4.0 environments: Technical, societal, and future implications, signals and communication technology (1–622). Springer International Publishing.

    Google Scholar 

  • Tanwar, S. (2020b). Fog data analytics for IoT applications—Next generation process model with state-of-the-art technologies. Studies in Big Data, Springer International Publishing, 76, 1–497.

    Google Scholar 

  • Yusuf, F., Ifijeh, G., & Owolabi, S. (2019). Awareness of internet of things and its potential in enhancing academic library service delivery in a developing country. Library Philosophy and Practice, 2831.

    Google Scholar 

  • Zheng, F., Luo, S., Song, K., Yan, C.-W., & Wang, M.-C. (2018). Improved lane line detection algorithm based on Hough transform. Pattern Recognition Image Analysis, 28(2), 254–260.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibril Abdullahi Bala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bala, J.A., Olaniyi, O.M., Folorunso, T.A., Daniya, E. (2021). An IoT-Based Autonomous Robot System for Maize Precision Agriculture Operations in Sub-Saharan Africa. In: Singh, K.K., Nayyar, A., Tanwar, S., Abouhawwash, M. (eds) Emergence of Cyber Physical System and IoT in Smart Automation and Robotics. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-66222-6_5

Download citation

Publish with us

Policies and ethics