Advertisement

Awareness Logic: A Kripke-Based Rendition of the Heifetz-Meier-Schipper Model

  • Gaia BelardinelliEmail author
  • Rasmus K. Rendsvig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12569)

Abstract

Heifetz, Meier & Schipper (HMS) present a lattice model of awareness. The HMS model is syntax-free, which precludes the simple option to rely on formal language to induce lattices, and represents uncertainty and unawareness with one entangled construct, making it difficult to assess the properties of either. Here, we present a model based on a lattice of Kripke models, induced by atom subset inclusion, in which uncertainty and unawareness are separate. We show the models to be equivalent by defining transformations between them which preserve formula satisfaction, and obtain completeness through our and HMS’ results.

Notes

Acknowledgments

We thank the reviewers for their keen eyes and productive comments. The Center for Information and Bubble Studies is funded by the Carlsberg Foundation. RKR was partially supported by the DFG-ANR joint project Collective Attitude Formation [RO 4548/8-1].

References

  1. 1.
    Ågotnes, T., Alechina, N.: A logic for reasoning about knowledge of unawareness. J. Logic Lang. Inf. 23(2), 197–217 (2014).  https://doi.org/10.1007/s10849-014-9201-4MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pietarinen, A.: Awareness in logic and cognitive neuroscience. In: Proceedings of IEEE International Conference on Cognitive Informatics, pp. 155–162 (2002)Google Scholar
  3. 3.
    van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E.: Merging frameworks for interaction. J. Philos. Logic 38(5), 491–526 (2009).  https://doi.org/10.1007/s10992-008-9099-xMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    van Benthem, J., Velázquez-Quesada, F.R.: The dynamics of awareness. Synthese 177, 5–27 (2010).  https://doi.org/10.1007/s11229-010-9764-9CrossRefzbMATHGoogle Scholar
  5. 5.
    Board, O., Chung, K.S.: Object-based unawareness. In: Bonanno, G., van der Hoek, W.M.W. (ed.) Proceedings of LOFT 7, pp. 35–41 (2006)Google Scholar
  6. 6.
    van Ditmarsch, H., French, T., Velázquez-Quesada, F.R., Wang, Y.: Knowledge, awareness, and bisimulation. In: TARK 2013 - Proceedings of the 14th Conference on Theoretical Aspects of Rationality and Knowledge, vol. 1, pp. 61–70. Institute of Mathematical Sciences (2013)Google Scholar
  7. 7.
    van Ditmarsch, H., French, T.: Semantics for knowledge and change of awareness. J. Logic Lang. Inf. 23(2), 169–195 (2014).  https://doi.org/10.1007/s10849-014-9194-zMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell. 34, 39–76 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grossi, D., Velázquez-Quesada, F.R.: Syntactic awareness in logical dynamics. Synthese 192(12), 4071–4105 (2015).  https://doi.org/10.1007/s11229-015-0733-1MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Halpern, J.Y.: Alternative semantics for unawareness. Games Econ. Behav. 37(2), 321–339 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Halpern, J.Y., Rêgo, L.C.: Reasoning about knowledge of unawareness. Games Econ. Behav. 67(2), 503–525 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Halpern, J.Y., Rêgo, L.C.: Reasoning about knowledge of unawareness revisited. Math. Soc. Sci. 65(2), 73–84 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Halpern, J.Y., Rêgo, L.C.: Interactive unawareness revisited. Games Econ. Behav. 62(1), 232–262 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Heifetz, A., Meier, M., Schipper, B.: A canonical model for interactive unawareness. Games Econ. Behav. 62, 304–324 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Heifetz, A., Meier, M., Schipper, B.C.: Interactive unawareness. J. Econ. Theory 130(1), 78–94 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hill, B.: Awareness dynamics. J. Philos. Logic 39(2), 113–137 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    van Lee, H.S., Rendsvig, R.K., van Wijk, S.: Intensional protocols for dynamic epistemic logic. J. Philos. Logic 48(6), 1077–1118 (2019).  https://doi.org/10.1007/s10992-019-09508-wMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Modica, S., Rustichini, A.: Awareness and partitional information structures. Theory Decis. 37(1), 107–124 (1994).  https://doi.org/10.1007/BF01079207MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Modica, S., Rustichini, A.: Unawareness and partitional information structures. Games Econ. Behav. 27(2), 265–298 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schipper, B.C.: Awareness. In: van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B.P. (eds.) Handbook of Epistemic Logic. College Publications (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Information and Bubble StudiesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations