Advertisement

Community Detection Algorithm Using Hypergraph Modularity

  • Bogumił Kamiński
  • Paweł PrałatEmail author
  • François Théberge
Conference paper
  • 55 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 943)

Abstract

We propose a community detection algorithm for hypergraphs. The main feature of this algorithm is that it can be adjusted to various scenarios depending on how often vertices in one community share hyperedges with vertices from other community.

Keywords

Community detection Hypergraphs Modularity 

References

  1. 1.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 10, P10008 (2008)CrossRefGoogle Scholar
  2. 2.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)CrossRefGoogle Scholar
  3. 3.
    Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. U.S.A. 104, 36–41 (2007)CrossRefGoogle Scholar
  4. 4.
    Kamiński, B., Poulin, V., Prałat, P., Szufel, P., Théberge, F.: Clustering via hypergraph modularity. PLOS ONE 14(11), e0224307 (2019)CrossRefGoogle Scholar
  5. 5.
    Kamiński, B., Prałat, P., Théberge, F.: Artificial Benchmark for Community Detection (ABCD)—Fast Random Graph Model with Community Structure, arXiv:2002.00843
  6. 6.
    Kumar, T., Vaidyanathan, S., Ananthapadmanabhan, H., Parthasarathy, S., Ravindran, B.: A new measure of modularity in hypergraphs: theoretical insights and implications for effective clustering. In: International Conference on Complex Networks and Their Applications, Complex Networks 2019, pp. 286–297. Springer, Cham (2019)Google Scholar
  7. 7.
    Kumar, T., Vaidyanathan, S., Ananthapadmanabhan, H., Parthasarathy, S., Ravindran, B.: Hypergraph clustering by iteratively reweighted modularity maximization. Appl. Netw. Sci 5 (2020)Google Scholar
  8. 8.
    Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84, 066122 (2011)CrossRefGoogle Scholar
  9. 9.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78 (2008)Google Scholar
  10. 10.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)CrossRefGoogle Scholar
  11. 11.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026–113 (2004)Google Scholar
  12. 12.
    Poulin, V., Théberge, F.: Ensemble clustering for graphs. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds.) Complex Networks and their Applications VII, COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol. 812. Springer, Cham (2018)Google Scholar
  13. 13.
    Théberge, F.: Summer School on Data Science Tools and Techniques in Modelling Complex Networks. https://github.com/ftheberge/ComplexNetworks2019/

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Bogumił Kamiński
    • 1
  • Paweł Prałat
    • 2
    Email author
  • François Théberge
    • 3
  1. 1.Warsaw School of EconomicsWarsawPoland
  2. 2.Ryerson UniversityTorontoCanada
  3. 3.The Tutte Institute for Mathematics and ComputingOttawaCanada

Personalised recommendations