Skip to main content

Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 115

Abstract

Secondary metabolites (SM) from organisms have served medicinal chemists over the past two centuries as an almost inexhaustible pool of new drugs, drug-like skeletons, and chemical probes that have been used in the “hunt” for new biologically active molecules with a “beneficial effect on human mind and body.” Several secondary metabolites, or their derivatives, have been found to be the answer in the quest to search for new approaches to treat or even eradicate many types of diseases that oppress humanity. A special place among SM is occupied by lignans and neolignans. These phenolic compounds are generated biosynthetically via radical coupling of two phenylpropanoid monomers, and are known for their multitarget activity and low toxicity. The disadvantage of the relatively low specificity of phenylpropanoid-based SM turns into an advantage when structural modifications of these skeletons are made. Indeed, phenylpropanoid-based SM previously have proven to offer great potential as a starting point in drug development. Compounds such as Warfarin® (a coumarin-based anticoagulant) as well as etoposide and teniposide (podophyllotoxin-based anticancer drugs) are just a few examples. At the beginning of the third decade of the twenty-first century, the call for the treatment of more than a dozen rare or previously “neglected” diseases remains for various reasons unanswered. Leishmaniasis, a neglected disease that desperately needs new ways of treatment, is just one of these. This disease is caused by more than 20 leishmanial parasites that are pathogenic to humans and are spread by as many as 800 sandfly species across subtropical areas of the world. With continuing climate changes, the presence of Leishmania parasites and therefore leishmaniasis, the disease caused by these parasites, is spreading from previous locations to new areas. Thus, leishmaniasis is affecting each year a larger proportion of the world’s population. The choice of appropriate leishmaniasis treatment depends on the severity of the disease and its form of manifestation. The success of current drug therapy is often limited, due in most cases to requiring long hospitalization periods (weeks to months) and the toxicity (side effects) of administered drugs, in addition to the increasing resistance of the parasites to treatment. It is thus important to develop new drugs and treatments that are less toxic, can overcome drug resistance, and require shorter periods of treatment. These aspects are especially important for the populations of developing countries. It was reported that several phenylpropanoid-based secondary metabolites manifest interesting antileishmanial activities and are used by various indigenous people to treat leishmaniasis. In this chapter, the authors shed some light on the various biological activities of phenylpropanoid natural products, with the main focus being on their possible applications in the context of antileishmanial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 18 May 2021

    The original version of the book was inadvertently published with incorrect figures (Fig. 3 and Fig. 14) in Chapter 3. The erratum chapter has been updated with the changes and the correct presentation is given here:

References

  1. O’Connor SE (2015) Engineering of secondary metabolism. Ann Rev Genet 49:71

    Article  PubMed  Google Scholar 

  2. Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617

    Article  CAS  PubMed  Google Scholar 

  3. Tiago O, Maicon N, Ivan RC, Diego JS, Vinácius F, Mauricio JP, Alan Q, Velci S (2017) Plant secondary metabolites and its dynamical systems of induction in response to environmental factors: a review. Afr J Agric Res 12:71

    Article  Google Scholar 

  4. Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    Article  PubMed Central  Google Scholar 

  5. Jenke-Kodama H, Müller R, Dittmann E (2008) Evolutionary mechanisms underlying secondary metabolite diversity. Prog Drug Res 65:120

    Google Scholar 

  6. Wink M (2016) Evolution of secondary plant metabolism. In: eLS. Wiley, Chichester, UK, p 1

    Google Scholar 

  7. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3

    Article  CAS  PubMed  Google Scholar 

  8. Teutonico RA, Dudley MW, Orr JD, Lynn DG, Binns AN (1991) Activity and accumulation of cell division-promoting phenolics in tobacco tissue cultures. Plant Physiol 97:288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Woo H-H, Orbach MJ, Hirsch AM, Hawes MC (1999) Meristem-localized inducible expression of a UDP-glycosyltransferase gene is essential for growth and development in pea and alfalfa. Plant Cell 11:2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241:346

    Article  CAS  PubMed  Google Scholar 

  11. Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. CRC Crit Rev Plant Sci 18:547

    Article  CAS  Google Scholar 

  12. Ruiz B, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Rodríguez-Sanoja R, Sánchez S, Langley E (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 36:146

    Article  CAS  PubMed  Google Scholar 

  13. Campos-Vega R, Loarca-Piña G, Oomah BD (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43:461

    Article  CAS  Google Scholar 

  14. Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ngo LT, Okogun JI, Folk WR (2013) 21st century natural product research and drug development and traditional medicines. Nat Prod Rep 30:584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bauer A, Brönstrup M (2014) Industrial natural product chemistry for drug discovery and development. Nat Prod Rep 31:35

    Article  CAS  PubMed  Google Scholar 

  17. Burza S, Croft SL, Boelaert M (2018) Leishmaniasis. Lancet 392:951

    Article  PubMed  Google Scholar 

  18. Anonymous (2017) Global vector control response 2017–2030. World Health Organization, Geneva

    Google Scholar 

  19. Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305

    Article  CAS  PubMed  Google Scholar 

  20. Desjeux P (2001) The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 95:239

    Article  CAS  PubMed  Google Scholar 

  21. Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L (2013) Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol 27:123

    Article  CAS  PubMed  Google Scholar 

  22. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D (2016) A historical overview of the classification, evolution, and dispersion of leishmania parasites and sandflies. PLoS Negl Trop Dis 10:e0004349

    Article  PubMed  PubMed Central  Google Scholar 

  23. Antinori S, Schifanella L, Corbellino M (2012) Leishmaniasis: new insights from an old and neglected disease. Eur J Clin Microbiol Infect Dis 31:109

    Article  CAS  PubMed  Google Scholar 

  24. Boité MC, Mauricio IL, Miles MA, Cupolillo E (2012) New insights on taxonomy, phylogeny and population genetics of leishmania (Viannia) parasites based on multilocus sequence analysis. PLoS Negl Trop Dis 6:e1888

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cupolillo E, Medina-Acosta E, Noyes H, Momen H, Grimaldi G (2000) A revised classification for Leishmania and Endotrypanum. Parasitol Today 16:142

    Article  CAS  PubMed  Google Scholar 

  26. Kumar R, Nylén S (2012) Immunobiology of visceral leishmaniasis. Front Immunol 3:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novais FO, Scott P (2016) Immunology of leishmaniasis. In: Ratcliffe MJH (ed) Encyclopedia of immunobiology, vol 4. Elsevier, Amsterdam, p 114

    Google Scholar 

  28. Sharma U, Singh S (2009) Immunobiology of leishmaniasis. Indian J Exp Biol 47:412

    CAS  PubMed  Google Scholar 

  29. Dostálová A, Volf P (2012) Leishmania development in sandflies: parasite-vector interactions overview. Parasit Vectors 5:276

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sanders HR, Evans AM, Ross LS, Gill SS (2003) Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. Insect Biochem Mol Biol 33:1105

    Article  CAS  PubMed  Google Scholar 

  31. Secundino N, Kimblin N, Peters NC, Lawyer P, Capul AA, Beverley SM, Turco SJ, Sacks D (2010) Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies. Cell Microbiol 12:906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bates PA (2008) Leishmania sandfly interaction: progress and challenges. Curr Opin Microbiol 11:340

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sacks DL, Perkins PV (1985) Development of infective stage Leishmania promastigotes within phlebotomine sand flies. Am J Trop Med Hyg 34:456

    Article  CAS  PubMed  Google Scholar 

  34. De Muylder G, Ang KKH, Chen S, Arkin MR, Engel JC McKerrow JH (2011) A screen against leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl Trop Dis 5:e1253

    Google Scholar 

  35. Cunningham ML, Titus RG, Turco SJ, Beverley SM (2001) Regulation of differentiation to the infective stage of the protozoan parasite Leishmania major by tetrahydrobiopterin. Science 292:285

    Article  CAS  PubMed  Google Scholar 

  36. Sádlová J, Price HP, Smith BA, Votýpka J, Volf P, Smith DF (2010) The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol 12:1765

    Article  PubMed  PubMed Central  Google Scholar 

  37. Peters NC, Egen JG, Secundino N, Debrand A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D (2008) In vivo imaging reveals an essential role for neutophils in leishmaniasis transmitted by sandflies. Science 321:970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S, Olivier M (2015) Exosome secretion by the parasitic protozoan Leishmania within the sandfly midgut. Cell Rep 13:957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Theodos CM, Titus RG (1993) Salivary gland material from the sandfly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro. Parasite Immunol 15:481

    Article  CAS  PubMed  Google Scholar 

  40. Bhunia GS, Kesari S, Jeyaram A, Kumar V, Das P (2010) Influence of topography on the endemicity of kala-azar: a study based on remote sensing and geographical information system. Geospat Health 4:155

    Article  PubMed  Google Scholar 

  41. Ready P (2014) Epidemiology of visceral leishmaniasis. Clin Epidemiol 6:147

    Article  PubMed  PubMed Central  Google Scholar 

  42. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561

    Article  CAS  PubMed  Google Scholar 

  43. Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BPD, Nakamura CV (2011) Recent advances in leishmaniasis treatment. Int J Infect Dis 15:e525

    Article  CAS  PubMed  Google Scholar 

  44. Zacarias DA, Rolão N, de Pinho FA, Sene I, Silva JC, Pereira TC, Costa DL, Costa CHN (2017) Causes and consequences of higher Leishmania infantum burden in patients with kala-azar: a study of 625 patients. Trop Med Int Heal 22:679

    Article  Google Scholar 

  45. Lima Verde FA, Lima Verde FAA, Saboia Neto A, Almeida PC, Lima Verde EM (2011) Hormonal disturbances in visceral leishmaniasis (kala-azar). Am J Trop Med Hyg 84:668

    Article  Google Scholar 

  46. Pearson RD, De Queiroz Sousa A (1996) Clinical spectrum of leishmaniasis. Clin Infect Dis 22:1

    Article  CAS  PubMed  Google Scholar 

  47. Elmahallawy EK, Sampedro Martínez A, Rodriguez-Granger J, Hoyos-Mallecot Y, Agil A, Navvaro Mari JM, Gutierrez Fernandéz J (2014) Diagnosis of leishmaniasis. J Infect Dev Ctries 8:961

    Article  PubMed  Google Scholar 

  48. Scott P, Novais FO (2016) Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol 16:581

    Article  CAS  PubMed  Google Scholar 

  49. Mokni M (2019) Cutaneous leishmaniasis. Ann Dermatol Venereol 146:232

    Article  CAS  PubMed  Google Scholar 

  50. Dowlati Y (1996) Cutaneous leishmaniasis: clinical aspect. Clin Dermatol 14:425

    Article  CAS  PubMed  Google Scholar 

  51. Kumar R, Engwerda C (2014) Vaccines to prevent leishmaniasis. Clin Transl Immunol 3:e13

    Article  Google Scholar 

  52. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jaafari MR, Hatamipour M, Alavizadeh SH, Abbasi A, Saberi Z, Rafati S, Taslimi Y, Mohammadi AM, Khamesipour A (2019) Development of a topical liposomal formulation of amphotericin B for the treatment of cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist 11:156

    Article  PubMed  PubMed Central  Google Scholar 

  54. Patil RS, Patil MS, Kshirsagar SS, Chaudhari PS, Bayas JP, Oswald RJ (2012) Synthetic and natural products against leishmaniasis: a review. World J Public Health Sci 1:7

    Google Scholar 

  55. Jha TK (1983) Evaluation of diamidine compound (pentamidine isethionate) in the treatment of resistant cases of kala-azar occurring in North Bihar, India. Trans R Soc Trop Med Hyg 77:167

    Article  CAS  PubMed  Google Scholar 

  56. Sundar S, Jha TK, Sindermann H, Junge K, Bachmann P, Berman J (2003) Oral miltefosine treatment in children with mild to moderate indian visceral leishmaniasis. Pediatr Infect Dis J 22:434

    Article  PubMed  Google Scholar 

  57. Sundar S, Chakravarty J (2008) Paromomycin in the treatment of leishmaniasis. Expert Opin Investig Drugs 17:787

    Article  CAS  PubMed  Google Scholar 

  58. Loiseau PM, Cojean S, Schrével J (2011) From the mechanism of action to the risk of drug resistance. Parasite 18:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saenz RE, Paz H, Berman JD (1990) Efficacy of ketoconazole against Leishmania braziliensis panamensis cutaneous leishmaniasis. Am J Med 89:147

    Article  CAS  PubMed  Google Scholar 

  60. Nunes DCDO, Bispo-Da-Silva LB, Napolitano DR, Costa MS, Figueira MMNR, Rodrigues RS, Rodrigues VDM, Yoneyama KAG (2017) In vitro additive interaction between ketoconazole and antimony against intramacrophage Leishmania (Leishmania) amazonensis amastigotes. PLoS One 12:e0180530

    Article  PubMed  PubMed Central  Google Scholar 

  61. Monzote L (2009) Current treatment of leishmaniasis: a review. Open Antimicrob Agents J 1:9

    CAS  Google Scholar 

  62. Maia C, Dionísio L, Afonso MO, Neto L, Cristóvao JM, Campino L (2013) Leishmania infection and host-blood feeding preferences of phlebotomine sandflies and canine leishmaniasis in an endemic European area, the Algarve Region in Portugal. Mem Inst Oswaldo Cruz 108:481

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chamaillé L, Tran A, Meunier A, Bourdoiseau G, Ready P, Dedet JP (2010) Environmental risk mapping of canine leishmaniasis in France. Parasites Vectors 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alvar J, Yactayo S, Bern C (2006) Leishmaniasis and poverty. Trends Parasitol 22:552

    Article  PubMed  Google Scholar 

  65. Chan-Bacab MJ, Peña-Rodríguez LM (2001) Plant natural products with leishmanicidal activity. Nat Prod Rep 18:674

    Article  CAS  PubMed  Google Scholar 

  66. Iwu MM, Jackson JE, Schuster BG (1994) Medicinal plants in the fight against leishmaniasis. Parasitol Today 10:65

    Article  CAS  PubMed  Google Scholar 

  67. Weaver LM, Herrmann KM (1997) Dynamics of the shikimate pathway in plants. Trends Plant Sci 2:346

    Article  Google Scholar 

  68. Garner C, Herrmann (1984) Structural analysis of 3-deoxy-d-arabino-heptulosonate 7-phosphate by H- and natural-abundance 13C-n.m.r. spectroscopy. Carbohydr Res 132:317

    Google Scholar 

  69. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473

    Article  CAS  PubMed  Google Scholar 

  70. Shneier A, Harris J, Kleanthous C, Coggins JR, Hawkins AR, Abell C (1993) Evidence for opposite stereochemical courses for the reaction catalysed by type I and type II dehydroquinases. Bioorg Med Chem Lett 3:1399

    Article  CAS  Google Scholar 

  71. Deka RK, Anton IA, Dunbar B, Coggins JR (1994) The characterisation of the shikimate pathway enzyme dehydroquinase from Pisum sativum. FEBS Lett 349:397

    Article  CAS  PubMed  Google Scholar 

  72. Kleanthous C, Deka R, Davis K, Kelly SM, Cooper A, Harding SE, Price NC, Hawkins AR, Coggins JR (1992) A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochem J 282:687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. M. Mousdale DM Campbell MS Coggins JR (1987) Purification and characterization of bifunctional dehydroquinase-shikimate: NADP oxidoreductase from pea seedlings. Phytochemistry 26:2665

    Google Scholar 

  74. Elsemore DA, Ornston LN (1994) The pca-pob supraoperonic cluster of Acinetobacter calcoaceticus contains quiA, the structural gene for quinate-shikimate dehydrogenase. J Bacteriol 176:7659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Griffin HG, Gasson MJ (1995) The gene (arok) encoding shikimate kinase I from Escherichia coli. DNA Sequence 5:195

    Article  CAS  PubMed  Google Scholar 

  76. Schmid J, Schaller A, Leibinger U, Boll W, Amrhein N (1992) The in-vitro synthesized tomato shikimate kinase precursor is enzymatically active and is imported and processed to the mature enzyme by chloroplasts. Plant J 2:375

    CAS  PubMed  Google Scholar 

  77. Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance—different approaches through protein engineering. FEBS J 278:2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Balasubramanian S, Abell C, Coggins JR (1990) Observation of an isotope effect in the chorismate synthase reaction. J Am Chem Soc 112:8581

    Article  CAS  Google Scholar 

  79. Macheroux P, Petersen J, Bornemann S, Lowe DJ, Thorneley RNF (1996) Binding of the oxidized, reduced, and radical flavin species to chorismate synthase. an investigation by spectrophotometry, fluorimetry, and electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Biochemistry 35:1643

    Google Scholar 

  80. Hawkes TR, Lewis T, Coggins JR, Mousdale DM, Lowe DJ, Thorneley RNF (1990) Chorismate synthase, pre-steady-state kinetics of phosphate release from 5-enolpyruvylshikimate 3-phosphate. Biochem J 265:899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bentley R (1990) Metabolic tree with many branches. Methods 25:307

    CAS  Google Scholar 

  82. Schmid J, Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737

    Article  CAS  Google Scholar 

  83. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73

    Article  CAS  PubMed  Google Scholar 

  84. Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107:142

    Article  CAS  Google Scholar 

  85. Weisshaar B, Jenkinst GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251

    Article  CAS  PubMed  Google Scholar 

  86. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1

    Article  CAS  PubMed  Google Scholar 

  87. Swain T (1977) Secondary compounds as protective agents. Annu Rev Plant Physiol 28:479

    Article  CAS  Google Scholar 

  88. Hättenschwiler S, Vitousek PM (2000) Polyphenols and nutrient cycling. Trends Ecol Evol 15:238

    Article  PubMed  Google Scholar 

  89. Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287

    Article  CAS  Google Scholar 

  90. Lattanzio V, Cardinali A, Linsalata V (2012) Plant phenolics: a biochemical and physiological perspective. In: Cheynier V, Sarni-Mancahdo P, Quidreau S (eds) Recent advances in polyphenols research; Wiley-Blackwell Publishing: Oxford, UK, vol 3, p 191

    Google Scholar 

  91. Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants. Physiol Mol Plant Pathol 57:101

    Article  CAS  Google Scholar 

  92. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, p 1250

    Google Scholar 

  93. Feucht W, Treutter D, Polster J (2004) Flavanol binding of nuclei from tree species. Plant Cell Rep 22:430

    Article  CAS  PubMed  Google Scholar 

  94. Sarma AD, Sharma R (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52:1313

    Article  CAS  Google Scholar 

  95. Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv Bot Res 25:141

    Article  CAS  Google Scholar 

  96. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301

    Article  CAS  PubMed  Google Scholar 

  97. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough MI (2010) Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 68:571

    Article  PubMed  PubMed Central  Google Scholar 

  99. Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M (2014) Flax and flaxseed oil: an ancient medicine and modern functional food. J Food Sci Technol 51:1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44:483

    Article  CAS  PubMed  Google Scholar 

  101. Cory H, Passarelli S, Szeto J, Tamez M, Mattei J (2018) The role of polyphenols in human health and food systems. Mini-Review. Front Nutr 5:87

    Article  PubMed  PubMed Central  Google Scholar 

  102. Isogai E, Isogai H, Hirose K, Hayashi S, Oguma K (2001) In vivo synergy between green tea extract and levofloxacin against enterohemorrhagic Escherichia coli O157 infection. Curr Microbiol 42:248

    Article  CAS  PubMed  Google Scholar 

  103. Tresserra-Rimbau A, Lamuela-Raventos RM, Moreno JJ (2018) Polyphenols, food and pharma, current knowledge and directions for future research. Biochem Pharmacol 156:186

    Article  CAS  PubMed  Google Scholar 

  104. Lecour S, T. Lamont K (2011) Natural polyphenols and cardioprotection. Mini Rev Med Chem 11:1191

    Google Scholar 

  105. Hunyadi A (2019) The mechanism(s) of action of antioxidants: from scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 39:2505

    Article  CAS  PubMed  Google Scholar 

  106. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916

    Article  CAS  Google Scholar 

  107. Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and antiradical activity of some phenolic acids. Food Chem Toxicol 41:753

    Article  CAS  PubMed  Google Scholar 

  108. Saeidnia S, Abdollahi M (2013) Antioxidants: friends or foe in prevention or treatment of cancer—the debate of the century. Toxicol Appl Pharmacol 271:49

    Article  CAS  PubMed  Google Scholar 

  109. Price DL (1999) New order from neurological disorders. Nature 399:3

    Article  Google Scholar 

  110. Forman MS, Trojanowski JQ, Lee VM (2004) Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 10:1055

    Article  CAS  PubMed  Google Scholar 

  111. Reglodi D, Renaud J, Tamas A, Tizabi Y, Socías SB, Del-Bel E, Raisman-Vozari R (2017) Novel tactics for neuroprotection in Parkinson’s disease: role of antibiotics, polyphenols, and neuropeptides. Prog Neurobiol 155:120

    Article  CAS  PubMed  Google Scholar 

  112. Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, Pan Y, Gowda GAN, Raftery D, Arrieta-Cruz I, Sharma V, Cooper B, Lobo J, Simon JE, Zhang C, Cheng A, Quian X, Ono K, Teplow DB, Pavlides C, Dixon RA, Pasinetti GM (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 32:5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Drugs Aging 18:685

    Article  CAS  PubMed  Google Scholar 

  114. Tahara T, Shibata T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, Maruyama N, Kamano T, Kamiya Y, Nakagawa Y, Fujita H, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I, Arisawa T (2009) Effect of MDR1 gene promoter methylation in patients with ulcerative colitis. Int J Mol Med 23:521

    Article  CAS  PubMed  Google Scholar 

  115. Oyama Y, Fuchs PA, Katayama N, Noda K (1994) Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca2+-loaded brain neurons. Brain Res 635:125

    Article  CAS  PubMed  Google Scholar 

  116. Wettstein A (2000) Cholinesterase inhibitors and gingko extracts-are they comparable in the treatment of dementia: comparison of published placebo-controlled efficacy studies of at least six months’ duration. Phytomedicine 6:393

    Article  CAS  PubMed  Google Scholar 

  117. Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, Suh HW, Kim YH, Song DK (2001) Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Noguchi-Shinohara M, Yuki S, Dohmoto C, Ikeda Y, Samuraki M, Iwasa M, Yokogawa M, Asai K, Komai K, Nakamura H, Yamada M (2014) Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS One 9:e96013

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ng T-P, Chiam P-C, Lee T, Chua HC, Lim L, Kua EH (2006) Curry consumption and cognitive function in the elderly. Am J Epidemiol 164:898

    Article  PubMed  Google Scholar 

  120. Aquilano K, Baldelli S, Rotilio G, Ciriolo MR (2008) Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and antiinflammatory activity of polyphenols. Neurochem Res 33:2416

    Article  CAS  PubMed  Google Scholar 

  121. Huang W-J, Zhang X, Chen W-W (2016) Association between alcohol and Alzheimer’s disease. Exp Ther Med 12:1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Orgogozo JM, Dartigues JF, Lafont S, Letenneur L, Commenges D, Salamon R, Renaud S, Breteler MB (1997) Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol (Paris) 153:185

    CAS  Google Scholar 

  123. Praveen Kumar V, Gajendra Reddy R, Vo DD, Chakravarty S, Chandrasekhar S, Grée R (2012) Synthesis and neurite growth evaluation of new analogues of honokiol, a neolignan with potent neurotrophic activity. Bioorg Med Chem Lett 22:1439

    Article  CAS  PubMed  Google Scholar 

  124. Chilampalli S, Zhang X, Fahmy H, Kausnik RS, Zeman D, Hildreth MB, Dwivedi C (2010) Chemopreventive effects of honokiol on UVB-induced skin cancer development. Anticancer Res 30:777

    CAS  PubMed  Google Scholar 

  125. Rauf A, Patel S, Imran M, Maalik A, Arshad MU, Saeed F, Mabkhot YN, Al-Showiman SS, Ahmad N, Elsharkawy E (2018) Honokiol: an anticancer lignan. Biomed Pharmacother 107:555

    Article  CAS  PubMed  Google Scholar 

  126. Fang C-Y, Chen S-J, Wu H-N, Ping Y-H, Lin C-Y, Shiuan D, Chen C-L, Lee Y-R, Huang K-J (2015) Honokiol, a lignan biphenol derived from the magnolia tree, inhibits dengue virus type 2 infection. Viruses 7:4894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xian Y-F, Ip S-P, Mao Q-Q, Su Z-R, Chen J-N, Lai X-P, Lin Z-X (2015) Honokiol improves learning and memory impairments induced by scopolamine in mice. Eur J Pharmacol 760:88

    Article  CAS  PubMed  Google Scholar 

  128. Freeman BA, Crapo JD (1982) Biology of disease. Free radicals and tissue injury. Lab Investig 47:412

    Google Scholar 

  129. Mantle D, Preedy VR (1999) Free radicals as mediators of alcohol toxicity. Adverse Drug React Toxicol Rev 18:235

    CAS  PubMed  Google Scholar 

  130. Vacek J, Zatloukalová M, Vrba J, De Vleeschouwer F, De Proft F, Oblouková M, Sokolová R, Pospíšil J (2020) Diferulate: a highly effective electron donor. J Electroanal Chem 869:113950

    Article  CAS  Google Scholar 

  131. Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15

    CAS  PubMed  Google Scholar 

  132. Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev 2016:1

    Article  Google Scholar 

  133. Arts ICW, Hollman PCH (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81:317S

    Article  CAS  PubMed  Google Scholar 

  134. Petti S, Scully C (2009) Polyphenols, oral health and disease: a review. J Dent 37:413

    Article  CAS  PubMed  Google Scholar 

  135. Rodrigo R, Rivera G (2002) Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine. Free Radic Biol Med 33:409

    Article  CAS  PubMed  Google Scholar 

  136. Caimi G, Carollo C, Lo Presti R (2004) Chronic renal failure: oxidative stress, endothelial dysfunction and wine. Clin Nephrol 62:331

    Article  CAS  PubMed  Google Scholar 

  137. Pietta P, Simonetti P, Gardana C, Brusamolino A, Morazzoni P, Bombardelli E (1998) Relationship between rate and extent of catechin absorption and plasma antioxidant status. Biochem Mol Biol Int 46:895

    CAS  PubMed  Google Scholar 

  138. Pannu N, Bhatnagar A (2019) Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother 109:2237

    Article  CAS  PubMed  Google Scholar 

  139. Nihei T, Miura Y, Yagasaki K (2001) Inhibitory effect of resveratrol on proteinuria, hypoalbuminemia, and hyperlipidemia in nephritic rats. Life Sci 68:2845

    Article  CAS  PubMed  Google Scholar 

  140. Kerry NL, Abbey M (1997) Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 135:93

    Article  CAS  PubMed  Google Scholar 

  141. Nigdikar SV, Williams NR, Griffin BA, Howard AN (1998) Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. Am J Clin Nutr 68:258

    Article  CAS  PubMed  Google Scholar 

  142. Dugas AJJ, Castañeda-Acosta J, Bonin GC, Price KL, Fischer NH, Winston GW (2000) Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: structure-activity relationships. J Nat Prod 63:327

    Article  CAS  PubMed  Google Scholar 

  143. Andriantsitohaina R (1999) Regulation of vascular tone by plant polyphenols: role of nitric oxide. Gen Physiol Biophys 18:3

    CAS  PubMed  Google Scholar 

  144. Keevil JG, Osman HE, Reed JD, Folts JD (2000) Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J Nutr 130:53

    Article  CAS  PubMed  Google Scholar 

  145. Rodrigo R, Bosco C (2006) Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol Part C Toxicol Pharmacol 142:317

    Google Scholar 

  146. Ishikawa Y, Kitamura M (2000) Antiapoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int 58:1078

    Article  CAS  PubMed  Google Scholar 

  147. Shimoi K, Shen B, Toyokuni S, Mochizuki R, Furugori M, Kinae N (1997) Protection by αG-rutin, a water-soluble antioxidant flavonoid, against renal damage in mice treated with ferric nitrilotriacetate. Jap J Cancer Res 88:453

    Article  CAS  Google Scholar 

  148. Rasouli H, Farzaei MH, Khodarahmi R (2017) Polyphenols and their benefits: a review. Int J Food Prop 20:1

    Article  Google Scholar 

  149. Duthie G, Pedersen M, Gardner P, Morrice P, Jenkinson A, McPhail D, Steele G (1998) The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. Eur J Clin Nutr 52:733

    Article  CAS  PubMed  Google Scholar 

  150. Durak İ, Çimen MYB, Büyükkogak S, Kacpmaz M, Öztürk HS (1999) The effect of red wine on blood antioxidant potential. Curr Med Res Opin 15:208

    Article  CAS  PubMed  Google Scholar 

  151. Howard A, Chopra M, Thurnham DI, Strain JJ, Fuhrman B, Aviram M (2002) Red wine consumption and inhibition of LDL oxidation: what are the important components. Med Hypotheses 59:101

    Article  CAS  PubMed  Google Scholar 

  152. Hollman PCH, Katan MB (1999) Dietary flavonoids: intake, health effects, and bioavailability. Food Chem Toxicol 37:937

    Article  CAS  PubMed  Google Scholar 

  153. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967

    Article  CAS  PubMed  Google Scholar 

  154. Stoclet JC, Chataigneau T, Ndiaye M, Oak MH, El Bedoui J, Chataigneau M, Chini-Kerth VB (2004) Vascular protection by dietary polyphenols. Eur J Pharmacol 500:299

    Article  CAS  PubMed  Google Scholar 

  155. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90:251

    Article  CAS  PubMed  Google Scholar 

  156. Pasterkamp G, Schoneveld AH, Hijnen DJ, De Kleijn DPV, Teepen H, Van Der Wal AC, Borst C (2000) Atherosclerotic arterial remodeling and the localization of macrophages and matrix metalloproteases 1, 2, and 9 in the human coronary artery. Atherosclerosis 150:245

    Article  CAS  PubMed  Google Scholar 

  157. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1

    Article  CAS  PubMed  Google Scholar 

  158. Oak MH, El Bedoui J, Anglard P, Schini-Kerth VB (2004) Red wine polyphenolic compounds strongly inhibit pro-matrix metalloproteinase-2 expression and its activation in response to thrombin via direct inhibition of membrane type 1-matrix metalloproteinase in vascular smooth muscle cells. Circulation 110:1861

    Article  CAS  PubMed  Google Scholar 

  159. Oak M-H, El Bedoui J, Schini-Kerth VB (2005) Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem 16:1

    Article  CAS  PubMed  Google Scholar 

  160. Ndiaye M, Chataigneau T, Chataigneau M, Schini-Kerth VB (2004) Red wine polyphenols induce EDHF-mediated relaxations in porcine coronary arteries through the redox-sensitive activation of the PI3-kinase/Akt pathway. Br J Pharmacol 142:1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Oak MH, Bedoui JE, Madeira SVF, Chalupsky K, Schini-Kerth VB (2006) Delphinidin and cyanidin inhibit PDGF AB-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. Br J Pharmacol 149:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Masuda M, Suzui M, Lim JTE, Degouchi A, Soh JW, Weinstein IB (2002) Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J Exp Ther Oncol 2:350

    Article  CAS  PubMed  Google Scholar 

  163. Sartippour MR, Shao Z-M, Heber D, Beatty P, Zhang L, Liu C, Ellis L, Liu W, Go VL, Brooks MN (2002) Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 132:2307

    Article  CAS  PubMed  Google Scholar 

  164. Halliwell B, Zhao K, Whiteman M (2000) The gastrointestinal tract: a major site of antioxidant action. Free Radic Res 33:819

    Article  CAS  PubMed  Google Scholar 

  165. Ho YC, Yang SF, Peng CY, Chou MY, Chang YC (2007) Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator. J Oral Pathol Med 36:588

    Article  CAS  PubMed  Google Scholar 

  166. Hsu S, Lewis JB, Borke JL, Singh B, Dickinson DP, Caughman GB, Athar M, Drake L, Aiken AC, Huynh CT, Das BR, Osaki T, Schuster GS (2001) Chemopreventive effects of green tea polyphenols correlate with reversible induction of p57 expression. Anticancer Res 21:374

    Google Scholar 

  167. Masuda M, Suzui M, Weinstein IB (2001) Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 7:4220

    CAS  PubMed  Google Scholar 

  168. Khafif A, Schantz SP, Al-Rawi M, Edelstein D, Sacks PG (1998) Green tea regulates cell cycle progression in oral leukoplakia. Head Neck 20:528

    Article  CAS  PubMed  Google Scholar 

  169. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen C-L (2014) Novel insights of dietary polyphenols and obesity. J Nutr Biochem 25:1

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and antiinflammatory effects. Curr Opin Food Sci 8:33

    Article  Google Scholar 

  171. Zhou Y, Zheng J, Li Y, Xu D-P, Li S, Chen Y-M, Li H-B (2016) Natural polyphenols for prevention and treatment of cancer. Nutrients 8:515

    Article  PubMed Central  Google Scholar 

  172. Hisanaga A, Mukai R, Sakao K, Terao J, Hou D-X (2016) Antiinflammatory effects and molecular mechanisms of 8-prenyl quercetin. Mol Nutr Food Res 60:1020

    Article  CAS  PubMed  Google Scholar 

  173. Gormaz JG, Quintremil S, Rodrigo R (2015) Cardiovascular disease: a target for the pharmacological effects of quercetin. Curr Top Med Chem 15:1735

    Article  CAS  PubMed  Google Scholar 

  174. Vaidya B, Cho SY, Oh KS, Kim SH, Kim YO, Jeong EH, Nguyen TT, Kim SH, Kim IS, Kwon J, Kim D (2016) Effectiveness of periodic treatment of quercetin against influenza A virus H1N1 through modulation of protein expression. J Agric Food Chem 64:4416

    Article  CAS  PubMed  Google Scholar 

  175. Al-Jabban SMR, Zhang X, Chen G, Mekuria Addo E, Rakotondraibe LH, Chen Q-H (2015) Synthesis and antiproliferative effects of quercetin derivatives. Nat Prod Commun 10:2113

    PubMed  Google Scholar 

  176. Kang TB, Liang NC (1997) Studies on the inhibitory effects of quercetin on the growth of HL-60 leukemia cells. Biochem Pharmacol 54:1013

    Article  CAS  PubMed  Google Scholar 

  177. Uddin S, Choudhry MA (1995) Quercetin, a bioflavonoid, inhibits the DNA synthesis of human leukemia cells. Biochem Mol Biol Int 36:545

    CAS  PubMed  Google Scholar 

  178. Scambia G, Ranelletti FO, Panici PB, De Vincenzo R, Bonanno G, Ferrandina G, Piantelli M, Bussa S, Rumi C, Cianfriglia M (1994) Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother Pharmacol 34:459

    Article  CAS  PubMed  Google Scholar 

  179. Chi CW, Chang YF, Ou YR, Hsieh CC, Lui WY, P’Eng RK, Liu TY (1997) Effect of quercetin on the in vitro and in vivo growth of mouse hepatoma cells. Oncol Rep 4:1021

    CAS  PubMed  Google Scholar 

  180. Lü HQ, Niggemann B, Zänker KS (1996) Suppression of the proliferation and migration of oncogenic ras-dependent cell lines, cultured in a three-dimensional collagen matrix, by flavonoid-structured molecules. J Cancer Res Clin Oncol 122:335

    Article  PubMed  Google Scholar 

  181. Caltagirone S, Ranelletti FO, Rinelli A, Maggiano N, Colasante A, Musiani P, Aiello FB, Piantelli M (1997) Interaction with type II estrogen binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small-cell lung cancer. Am J Respir Cell Mol Biol 17:51

    Article  CAS  PubMed  Google Scholar 

  182. Kuo SM (1996) Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett 110:41

    Article  CAS  PubMed  Google Scholar 

  183. Hirano T, Gotoh M, Oka K (1994) Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci 55:1061

    Article  CAS  PubMed  Google Scholar 

  184. Salucci M, Stivala LA, Maiani G, Bugianesi R, Vannini V (2002) Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer 86:1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Little CH, Combert E, McMillan DC, Horgan PG, Roxburgh CSD (2015) The role of dietary polyphenols in the moderation of the inflammatory response in early stage colorectal cancer. Food Sci Nutr 57:2310

    Google Scholar 

  186. Hossain P, Kawar B, Nahas EM (2007) Obesity and diabetes in the developing world—a growing challenge. N Engl J Med 356:213

    Article  CAS  PubMed  Google Scholar 

  187. Tang X, Liu J, Dong W, Li P, Li L, Hou J, Zheng Y, Lin C, Ren J (2015) Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation 38:94

    Article  CAS  PubMed  Google Scholar 

  188. Zang Y, Zhang L, Igarashi K, Yu C (2015) The antiobesity and antidiabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct 6:834

    Article  CAS  PubMed  Google Scholar 

  189. Montero M, de la Fuente S, Fonteriz RI, Moreno A, Alvarez J (2014) Effects of long-term feeding of the polyphenols resveratrol and kaempferol in obese mice. PLoS One 9:e112825

    Article  PubMed  PubMed Central  Google Scholar 

  190. García-Mediavilla V, Crespo I, Collado PS, Esteller A, Sáncehz-Campos S, Tunón MJ, Gonzáles-Gallego J (2007) The antiinflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells. Eur J Pharmacol 557:221

    Article  PubMed  Google Scholar 

  191. Song Y, Lee S-J, Jang S-H, Ha JH, Song YM, Ko Y-G, Kim H-D, Min W, Kang SN, Cho J-H (2014) Sasa borealis stem extract attenuates hepatic steatosis in high-fat diet-induced obese rats. Nutrients 6:2179

    Article  PubMed  PubMed Central  Google Scholar 

  192. Lee J, Kim JH (2016) Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS One 11:e0155264

    Article  PubMed  PubMed Central  Google Scholar 

  193. Song W, Dang Q, Xu D, Chen Y, Zhu G, Wu K, Zeng J, Long Q, Wang X, He D, Li L (2014) Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncol Rep 31:1350

    Article  CAS  PubMed  Google Scholar 

  194. Zhang Y, Chen AY, Li M, Chen C, Yao Q (2008) Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res 148:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Xu H, Lv M, Tian X (2009) A review on hemisynthesis, biosynthesis, biological activities, mode of action, and structure-activity relationship of podophyllotoxins: 2003–2007. Curr Med Chem 16:327

    Article  CAS  PubMed  Google Scholar 

  196. von Krogh G, Longstaff E (2001) Podophyllin office therapy against condyloma should be abandoned. Sex Transm Infect 77:409

    Article  Google Scholar 

  197. Zálešák F, Bon DJYD, Pospíšil J (2019) Lignans and neolignans: plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res 146:104284

    Article  PubMed  Google Scholar 

  198. Ardalani H, Avan A, Ghayour-Mobarhan M (2017) Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J Phytomed 7:285

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Gordaliza M, García PA, del Corral JMM, Castro MA, Gómez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications, and new cytotoxic derivatives. Toxicon 44:441

    Article  CAS  PubMed  Google Scholar 

  200. Gordaliza M, Castro MA, del Corral JM, Feliciano AS (2000) Antitumor properties of podophyllotoxin and related compounds. Curr Pharm Des 6:1811

    Article  CAS  PubMed  Google Scholar 

  201. Hande KR (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514

    Article  CAS  PubMed  Google Scholar 

  202. Fukamiya N, Lee K-H (1986) Antitumor agents, 81. Justicidin-A and diphyllin, two cytotoxic principles from Justicia procumbens. J Nat Prod 49:348

    Google Scholar 

  203. Tian J, Hao X, He H (2006) A new lignan and four new lignan glycosides from Mananthes patentiflora. Helv Chim Acta 89:291

    Article  CAS  Google Scholar 

  204. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147:227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yahfoufi N, Alsadi N, Jambi M, Matar C (2018) The immunomodulatory and antiinflammatory role of polyphenols. Nutrients 10:1618

    Article  PubMed Central  Google Scholar 

  206. Hayashi K, Narutaki K, Nagaoka Y, Hayashi T, Uesato S (2010) Therapeutic effect of arctiin and arctigenin in immunocompetent and immuno-compromised mice infected with influenza A virus. Biol Pharm Bull 33:1199

    Article  CAS  PubMed  Google Scholar 

  207. Awale S, Lu J, Kalauni SK, Kurashima Y, Tezuka Y, Kadota S, Esumi H (2006) Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res 66:1751

    Article  CAS  PubMed  Google Scholar 

  208. Kim J-Y, Hwang J-H, Cha M-R, Yoon M-Y, Son E-S, Tomida A, Ko B, Song S-W, Shin-ya K, Hwang Y, Park H-R (2010) Arctigenin blocks the unfolded protein response and shows therapeutic antitumor activity. J Cell Physiol 224:33

    CAS  PubMed  Google Scholar 

  209. Lee S, Shin S, Kim H, Han S, Kim K, Kwon J, Kwak J-H, Lee C-K, Ha N-J, Yim D, Kim K (2011) Antiinflammatory function of arctiin by inhibiting COX-2 expression via NF-κB pathways. J Inflamm 8:16

    Article  CAS  Google Scholar 

  210. Xie L-H, Ahn E-M, Akao T, Abdel-Hafez AA-M, Nakamura N, Hattori M (2003) Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem Pharm Bull 51:378

    Article  CAS  Google Scholar 

  211. Feng T, Cao W, Shen W, Zhang L, Gu X, Gui Y, Tsai H-I, Liu X, Li J, Zhang J, Li S, Wu F, Liu Y (2017) Arctigenin inhibits STAT3 and exhibits anticancer potential in human triple-negative breast cancer therapy. Oncotarget 8:329

    Article  PubMed  Google Scholar 

  212. Lee J, Imm J-Y, Lee S-H (2017) β-Catenin mediates antiadipogenic and anticancer effects of arctigenin in preadipocytes and breast cancer cells. J Agric Food Chem 65:2513

    Article  CAS  PubMed  Google Scholar 

  213. Zhang M, Cai S, Zuo B, Gong W, Tang Z, Zhou D, Weng M, Qin Y, Wang S, Liu J, Ma F, Quan Z (2017) Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway. Tumour Biol 39:329

    Google Scholar 

  214. Su B-N, Cuendet M, Farnsworth NR, Fong HHS, Pezzuto JM, Kinghorn AD (2002) Activity-guided fractionation of the seeds of Ziziphus jujuba using a cyclooxygenase-2 inhibitory assay. Planta Med 68:1125

    Article  CAS  PubMed  Google Scholar 

  215. Cho JY, Park J, Kim PS, Yoo ES, Baik KU, Park MH (2001) Savinin, a lignan from Pterocarpus santalinus inhibits tumor necrosis factor-alpha production and T cell proliferation. Biol Pharm Bull 24:167

    Article  CAS  PubMed  Google Scholar 

  216. Su G, Zhang R, Yang X, Bai R, Yin X, Gao X, Li L, Tu P, Chai X (2016) Lignans from the stem bark of Syringa pinnatifolia. Fitoterapia 114:63

    Article  CAS  PubMed  Google Scholar 

  217. Jing Y, Zhang Y-F, Shang M-Y, Liu G-X, Li Y-L, Wang X, Cai S-Q (2017) Chemical constituents from the roots and rhizomes of Asarum heterotropoides var. mandshuricum and the in vitro antiinflammatory activity. Molecules 22:125

    Google Scholar 

  218. Rom S, Zuluaga-Ramirez V, Reichenbach NL, Ericson MA, Winfield M, Gajghate S, Christofidu-Solomidou M, Jordan-Sciutto KL, Persidsky Y (2018) Secoisolariciresinol diglucoside is a blood-brain barrier protective and antiinflammatory agent: implications for neuroinflammation. J Neuroinflammation 15:1

    Article  Google Scholar 

  219. Kay AB (2001) Allergy and allergic diseases. N Engl J Med 344:30

    Article  CAS  PubMed  Google Scholar 

  220. Morikawa T, Hachiman I, Matsuo K, Nisida E, Ninomiya K, Hayakawa T, Yoshie O, Muraoka O, Nakayama T (2016) Neolignans from the arils of Myristica fragrans as potent antagonists of CC chemokine receptor 3. J Nat Prod 79:2005

    Article  CAS  PubMed  Google Scholar 

  221. Morikawa T, Hachiman I, Ninomiya K, Hata H, Sugawara K, Muraoka O, Matsuda H (2018) Degranulation inhibitors from the arils of Myristica fragrans in antigen-stimulated rat basophilic leukemia cells. J Nat Med 72:464

    Article  CAS  PubMed  Google Scholar 

  222. Tuyet T, Nguyen M, Lee H, Nguyen T, Mai Q, Jun C, Min S, Kim JA (2017) Four new lignans and IL-2 inhibitors from Magnoliae Flos. Chem Pharm Bull 65:840

    Article  Google Scholar 

  223. Li J, Xu P-S, Tan L-H, Zou Z-X, Wang Y-K, Long H-P, Zhou G, Li G, Xu K-P, Tan G-S (2017) Neolignans and serratane triterpenoids with inhibitory effects on xanthine oxidase from Palhinhaea cernua. Fitoterapia 119:45

    Article  CAS  PubMed  Google Scholar 

  224. Zhao L, Xiao H, Mu H, Huang T, Lin Z, Zhong L, Zeng G, Fan B, Lin C, Bian Z (2017) Magnolol, a natural polyphenol, attenuates dextran sulfate sodium-induced colitis in mice. Molecules 22:1218

    Article  PubMed Central  Google Scholar 

  225. Xu J, Tian G, Ma C, Gao H, Chen C, Yang W, Deng Q, Huang QZ, Huang F (2016) Flaxseed lignan secoisolariciresinol diglucoside ameliorates experimental colitis induced by dextran sulphate sodium in mice. J Funct Foods 26:187

    Article  CAS  Google Scholar 

  226. Zhou J, Li C-J, Yang J-Z, Ma J, Wu L-Q, Wang W-J, Zhang D-M (2016) Phenylpropanoid and lignan glycosides from the aerial parts of Lespedeza cuneata. Phytochemistry 121:58

    Article  CAS  PubMed  Google Scholar 

  227. Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D (2001) Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen elderly study. Am J Clin Nutr 74:227

    Article  CAS  PubMed  Google Scholar 

  228. Gadkari PV, Balaraman M (2015) Catechins: sources, extraction and encapsulation: a review. Food Bioprod Process 93:122

    Article  CAS  Google Scholar 

  229. Friedman M (2007) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 51:116

    Article  CAS  PubMed  Google Scholar 

  230. Zhao L, La VD, Grenier D (2013) Antibacterial, antiadherence, antiprotease, and antiinflammatory activities of various tea extracts: potential benefits for periodontal diseases. J Med Food 16:428

    Article  PubMed  Google Scholar 

  231. Taylor PW, Hamilton-Miller JMT, Stapleton PD (2005) Antimicrobial properties of green tea catechins. Food Sci 2:71

    Google Scholar 

  232. Yang CS, Wang H, Chen JX, Zhang J (2014) Effects of tea catechins on cancer signaling pathways. Enzymes 36:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Shin ES, Park J, Shin J-M, Cho D, Cho SY, Shin DW, Ham M, Kim JB, Lee TR (2008) Catechin gallates are NADP+-competitive inhibitors of glucose-6-phosphate dehydrogenase and other enzymes that employ NADP+ as a coenzyme. Bioorg Med Chem 16:3580

    Article  CAS  PubMed  Google Scholar 

  234. Navarro-Perán E, Cabezas-Herrera J, García-Cánovas F, Durrant MC, Thorneley RNF, Rodríguez-López JN (2005) The antifolate activity of tea catechins. Cancer Res 65:2059

    Article  PubMed  Google Scholar 

  235. Ishii T, Mori T, Tanaka T, Mizuno D, Yamaji R, Kumazawa S, Nakayama T, Akagawa M (2008) Covalent modification of proteins by green tea polyphenol (–)-epigallocatechin-3-gallate through autoxidation. Free Radic Biol Med 45:1384

    Article  CAS  PubMed  Google Scholar 

  236. Adachi S, Nagao T, Ingolfsson HI, Maxfield FR, Andersen OS, Kopelovich L, Weinstein IB (2007) The inhibitory effect of (–)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells. Cancer Res 67:6493

    Article  CAS  PubMed  Google Scholar 

  237. Duhon D, Bigelow RLH, Coleman DT, Steffan JJ, Yu C, Langston W, Kevil CG, Cardelli JA (2010) The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. Mol Carcinog 749:739

    Google Scholar 

  238. Fujimura Y, Yamada K, Tachibana H (2005) A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcεRI expression. Biochem Biophys Res Commun 336:674

    Article  CAS  PubMed  Google Scholar 

  239. Tipoe GL, Leung TM, Liong EC, Lau TYH, Fung ML, Nanji AA (2010) Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273:45

    Article  CAS  PubMed  Google Scholar 

  240. Shankar E, Kanwal R, Candamo M, Gupta S (2016) Dietary phytochemicals as epigenetic modifiers in cancer: promise and challenges. Semin Cancer Biol 40–41:82

    Article  PubMed  PubMed Central  Google Scholar 

  241. Chosa H, Toda M, Okubo S, Hara Y, Shimamura T (1992) Antimicrobial and microbicidal activities of tea and catechins against mycoplasma. Kansenshogaku Zasshi 66:606

    Article  CAS  PubMed  Google Scholar 

  242. Blanco AR, La Terra Mulè S, Babini G, Garbisa S, Enea V, Rusciano D (2003) (–)-Epigallocatechin-3-gallate inhibits gelatinase activity of some bacterial isolates from ocular infection, and limits their invasion through gelatine. Biochim Biophys Acta 1620:273

    Article  CAS  PubMed  Google Scholar 

  243. Hirasawa M, Takada K, Otake S (2006) Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries Res 40:265

    Article  CAS  PubMed  Google Scholar 

  244. Sawamura S, Sakane I, Satoh E, Ishii T, Shimizu Y, Nishimura M, Umehara K (2002) Isolation and determination of an antidote for botulinum neurotoxin from black tea extract. Nihon Yakurigaku Zasshi 120:116P

    Google Scholar 

  245. Dell’Aica I, Donà M, Tonello F, Piris A, Mock M, Montecucco M, Garbisa S (2004) Potent inhibitors of anthrax lethal factor from green tea. EMBO Rep 5:418

    Article  PubMed  PubMed Central  Google Scholar 

  246. Friedman M, Henika PR, Levin CE, Mandrell RE (2006) Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J Food Prot 69:354

    Article  CAS  PubMed  Google Scholar 

  247. Hamilton-Miller JM (1995) Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob Agents Chemother 39:2375

    Google Scholar 

  248. Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876

    Article  CAS  PubMed  Google Scholar 

  249. Satoh E, Ishii T, Shimizu Y, Sawamura S, Nishimura M (2002) A mechanism of the thearubigin fraction of black tea (Camellia sinensis) extract protecting against the effect of tetanus toxin. J Toxicol Sci 27:441

    Article  CAS  PubMed  Google Scholar 

  250. Chou CC, Lin LL, Chung KT (1999) Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season. Int J Food Microbiol 48:125

    Article  CAS  PubMed  Google Scholar 

  251. Isogai E, Isogai H, Takeshi K, Nishikawa T (1998) Protective effect of Japanese green tea extract on gnotobiotic mice infected with an Escherichia coli O157:H7 strain. Microbiol Immunol 42:125

    Article  CAS  PubMed  Google Scholar 

  252. Taguri T, Tanaka T, Kouno I (2004) Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol Pharm Bull 27:1965

    Article  CAS  PubMed  Google Scholar 

  253. Yanagawa Y, Yamamoto Y, Hara Y, Shimamura T (2003) A combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro. Curr Microbiol 47:244

    Article  CAS  PubMed  Google Scholar 

  254. Yee Y-K, Koo MW, Szeto M-L (2002) Chinese tea consumption and lower risk of Helicobacter infection. J Gastroenterol Hepatol 17:552

    Article  PubMed  Google Scholar 

  255. Lee K-M, Yeo M, Choue J-S, Jin JH, Park SJ, Cheong JY, Lee KJ, Kim JH, Hahm KB (2004) Protective mechanism of epigallocatechin-3-gallate against Helicobacter pylori-induced gastric epithelial cytotoxicity via the blockage of TLR-4 signaling. Helicobacter 9:632

    Article  CAS  PubMed  Google Scholar 

  256. Friedman M, Henika PR, Levin CE, Mandrell RE (2006) Antimicrobial wine formulations active against the foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica. J Food Sci 71:M245

    Article  CAS  Google Scholar 

  257. Setiawan VW, Zhang ZF, Yu GP, Lu QY, Li YA, Lu ML, Wang MR, Guo CH, Yu SZ, Kurtz RC, Hsieh CC (2001) Protective effect of green tea on the risks of chronic gastritis and stomach cancer. Int J Cancer 92:600

    Article  CAS  PubMed  Google Scholar 

  258. Matsunaga K, Klein TW, Friedman H, Yamamoto Y (2002) Epigallocatechin gallate, a potential immunomodulatory agent of tea components, diminishes cigarette smoke condensate-induced suppression of anti-Legionella pneumophila activity and cytokine responses of alveolar macrophages. Clin Diagn Lab Immunol 9:864

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Yamamoto Y, Matsunaga K, Friedman H (2004) Protective effects of green tea catechins on alveolar macrophages against bacterial infections. BioFactors 21:119

    Article  CAS  PubMed  Google Scholar 

  260. Yam TS, Shah S, Hamilton-Miller JM (1997) Microbiological activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components. FEMS Microbiol Lett 152:169

    Article  CAS  PubMed  Google Scholar 

  261. Anand PK, Kaul D, Sharma M (2006) Green tea polyphenol inhibits Mycobacterium tuberculosis survival within human macrophages. Int J Biochem Cell Biol 38:600

    Article  CAS  PubMed  Google Scholar 

  262. Sugita-Konishi Y, Hara-Kudo Y, Amano F, Okubo T, Aoi N, Iwaki M, Kumagai S (1999) Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7. Biochim Biophys Acta 1472:42

    Article  CAS  PubMed  Google Scholar 

  263. Ganguly NK, Kaur T (1996) Mechanism of action of cholera toxin and other toxins. Indian J Med Res 104:28

    CAS  PubMed  Google Scholar 

  264. Toda M, Okubo S, Ikigai H, Shimamura T (1990) Antibacterial and antihemolysin activities of tea catechins and their structural relatives. Nihon Saikingaku Zasshi 45:561

    Article  CAS  PubMed  Google Scholar 

  265. Weber JM, Ruzindana-Umunyana A, Imbeault L, Sircar S (2003) Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res 58:167

    Article  CAS  PubMed  Google Scholar 

  266. Clark KJ, Grant PG, Sarr AB, Belakere JR, Swaggerty CL, Phillips TD, Woode GN (1998) An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Vet Microbiol 63:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Chang L-K, Wei T-T, Chiu Y-F, Tung CP, Chuang JY, Hung SK, Li C, Liu ST (2003) Inhibition of Epstein-Barr virus lytic cycle by (–)-epigallocatechin gallate. Biochem Biophys Res Commun 301:1062

    Article  CAS  PubMed  Google Scholar 

  268. Kawai K, Tsuno NH, Kitayama J, Okaji Y, Yazawa K, Asakage M, Hori N, Watanabe T, Takahashi K, Nagawa H (2003) Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. J Allergy Clin Immunol 112:951

    Article  CAS  PubMed  Google Scholar 

  269. Hamza A, Zhan C-G (2006) How can (–)-epigallocatechin gallate from green tea prevent HIV-1 infection: mechanistic insights from computational modeling and the implication for rational design of anti-HIV-1 entry inhibitors. J Phys Chem B 110:2910

    Article  CAS  PubMed  Google Scholar 

  270. Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T (2002) Inhibitory effects of (–)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res 53:19

    Article  CAS  PubMed  Google Scholar 

  271. Liu S, Lu H, Zhao Q, He Y, Niu J, Debnath AK, Wu S, Jiang S (2005) Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim Biophys Acta 1723:270

    Article  CAS  PubMed  Google Scholar 

  272. Schroeder CM, Zhao C, DebRoy C, Tarcolini J, Zhao S, White DG, Wagner DD, McDermott PF, Walker RD, Meng J (2002) Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol 68:576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. de Souza Pereira JJ, Pereira A de PC, Jandú JJB, da Paz JA, Crovella S, Dos Santos Correia MT (2017) Commiphora leptophloeos phytochemical and antimicrobial characterization. Front Microbiol 8:52

    Google Scholar 

  274. Bai M, Wu L-J, Cai Y, Eu S-Y, Song X-P, Chen G-Y, Zheng C-J, Han C-R (2017) One new lignan derivative from Combretum alfredii Hance. Nat Prod Res 31:1022

    Article  CAS  PubMed  Google Scholar 

  275. Li C, Liu H, Zhao L, Zhang W, Qiu S, Yang X, Tan H (2017) Antibacterial neolignans from the leaves of Melaleuca bracteata. Fitoterapia 120:171

    Article  CAS  PubMed  Google Scholar 

  276. Park J-Y, Lim SH, Kim BR, Jeong JJ, Kwon H-J, Song G-Y, Ryu YB, Lee WS (2017) Sialidase inhibitory activity of diarylnonanoid and neolignan compounds extracted from the seeds of Myristica fragrans. Bioorg Med Chem Lett 27:3060

    Article  CAS  PubMed  Google Scholar 

  277. Park JY, Lim SH, Kim BR, Jeong HJ, Kwon HJ, Song GY, Ryu YB, Lee WS (2017) 8-O-4′-Neolignans from the stem bark of Illicium difengpi and their anti-HIV-1 activities. Chem Nat Compd 52:43

    Google Scholar 

  278. Zhang H, Kong H, Rumschlag-Booms E, Wang D (2017) Potent inhibitor of drug-resistant HIV-1 strains identified from the medicinal plant Justicia gendarussa. J Nat Prod 80:1798

    Google Scholar 

  279. Sulaiman SN, Zahari A, Liew SY, Litaudon M, Issam AM, Wahab HA, Awang K (2018) Pahangine A and B, two new oxetane containing neolignans from the barks of Beilschmiedia glabra kosterm (Lauraceae). Phytochem Lett 25:22

    Article  CAS  Google Scholar 

  280. Fujimoto T, Iizuka S, Enomoto M, Abe K, Yamashita K, Hanaoka N, Okabe N, Yoshida H, Yasui Y, Kobayashi M, Fujii Y, Tanaka H, Yamamoto M, Shimizu H (2012) Hand, foot, and mouth disease caused by coxsackievirus A6, Japan, 2011. Emerg Infect Dis 18:337

    Article  PubMed  PubMed Central  Google Scholar 

  281. Meng L, Guo Q, Chen M, Jiang J, Li Y, Shi J (2018) Isatindolignanoside A, a glucosidic indole-lignan conjugate from an aqueous extract of the Isatis indigotica roots. Chin Chem Lett 29:1257

    Article  CAS  Google Scholar 

  282. Qian X, Jin Y, Chen H, Xu Q, Ren H, Zhu S, Tang H, Wang Y, Zhao P, Qi Z, Zhu Y (2016) Trachelogenin, a novel inhibitor of hepatitis C virus entry through CD81. J Gen Virol 97:1134

    Article  CAS  PubMed  Google Scholar 

  283. Laparra JM, Sanz Y (2010) Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res 61:219

    Article  CAS  PubMed  Google Scholar 

  284. Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215

    Article  PubMed  PubMed Central  Google Scholar 

  285. Vendrame S, Guglielmetti S, Riso P, Arioli S, Klimis-Zacas D, Porrini M (2011) Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem 59:12815

    Article  CAS  PubMed  Google Scholar 

  286. Conlon MA, Bird AR (2014) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17

    Article  PubMed  PubMed Central  Google Scholar 

  287. Pacheco-Ordaz R, Wall-Medrano A, Goñi MG, Ramos-Clamont-Monfort G, Ayala-Zavala JF, González-Aguilar GA (2018) Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Lett Appl Microbiol 66:25

    Article  CAS  PubMed  Google Scholar 

  288. Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO, Santos A, Saad STO, Saad MJA (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50:16

    Article  CAS  PubMed  Google Scholar 

  289. Santhakumar AB, Battino M, Alvarez-Suarez JM (2018) Dietary polyphenols: structures, bioavailability and protective effects against atherosclerosis. Food Chem Toxicol 113:49

    Article  CAS  PubMed  Google Scholar 

  290. Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallero J, García-Mediavilla MV, Sánchez-Campos S (2017) Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med 102:188

    Article  CAS  PubMed  Google Scholar 

  291. Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818

    Article  PubMed  PubMed Central  Google Scholar 

  292. American Association of Diabetes (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81

    Article  Google Scholar 

  293. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635

    Article  CAS  PubMed  Google Scholar 

  294. Gregor MF, Hotamisligil S (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415

    Article  CAS  PubMed  Google Scholar 

  295. Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R, Liu Q, Tsao R (2015) Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem 172:862

    Article  CAS  PubMed  Google Scholar 

  296. Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175:556

    Article  CAS  PubMed  Google Scholar 

  297. Xiao JB, Hogger P (2014) Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem 22:23

    Article  Google Scholar 

  298. Torel J, Cillard J, Cillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry 25:383

    Article  CAS  Google Scholar 

  299. Sattanathan K, Dhanapal CK, Umarani R, Manavalan R (2011) Beneficial health effects of rutin supplementation in patients with diabetes mellitus. J Appl Pharm Sci 1:227

    Google Scholar 

  300. Kappel VD, Zanatta L, Postal BG, Silva FRMB (2013) Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Arch Biochem Biophys 532:55

    Article  CAS  PubMed  Google Scholar 

  301. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Konips E, Hesselink MKC, Kunz I, Schrauwen-Hinderling VB, Blaak E, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612

    Article  CAS  PubMed  Google Scholar 

  302. Kim S, Jin Y, Choi Y, Park T (2011) Resveratrol exerts antiobesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81:1343

    Article  CAS  PubMed  Google Scholar 

  303. Bradamante S, Barenghi L, Villa A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22:169

    Article  CAS  PubMed  Google Scholar 

  304. Shin JA, Lee H, Lim Y-K, Koh Y, Choi JH, Park E-M (2010) Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke. J Neuroimmunol 227:93

    Article  CAS  PubMed  Google Scholar 

  305. Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Palsamy P, Subramanian S (2009) Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats. Chem Biol Interact 179:356

    Article  CAS  PubMed  Google Scholar 

  307. Elmali N, Baysal O, Harma A, Esenkaya I, Mizrak B (2007) Effects of resveratrol in inflammatory arthritis. Inflammation 30:1

    Article  CAS  PubMed  Google Scholar 

  308. Olas B, Wachowicz B, Saluk-Juszczak J, Zieliński T, Kaca W, Buczyński A (2001) Antioxidant activity of resveratrol in endotoxin-stimulated blood platelets. Cell Biol Toxicol 17:117

    Article  CAS  PubMed  Google Scholar 

  309. Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287

    Article  CAS  PubMed  Google Scholar 

  310. Sun J, Tang Y, Yu X, Xu Y, Liu P, Xiao L, Liu L, Deng Q, Yao P (2016) Flaxseed lignans alleviate high fat diet-induced hepatic steatosis and insulin resistance in mice: potential involvement of AMP-activated protein kinase. J Funct Foods 24:482

    Article  CAS  Google Scholar 

  311. Pilar B, Güllich A, Oliveira P, Ströher D, Piccoli J, Manfredini V (2017) Protective role of flaxseed oil and flaxseed lignan secoisolariciresinol diglucoside against oxidative stress in rats with metabolic syndrome. J Food Sci 82:3029

    Article  CAS  PubMed  Google Scholar 

  312. Jang M-K, Yun Y-R, Kim J-H, Park M-H, Jung MH (2017) Gomisin N inhibits adipogenesis and prevents high-fat diet-induced obesity. Sci Rep 7:40345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Ma Y, Min H-K, Oh U, Hawkridge AM, Wang W, Mohsin AA, Chen Q, Sanayal A, Lesnefsky EJ, Fang X (2017) The lignan manassantin is a potent and specific inhibitor of mitochondrial complex I and bioenergetic activity in mammals. J Biol Chem 292:20989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Wang S, Wu C, Li X, Zhou Y, Zhang Q, Ma F, Wei J, Zhang X, Guo P (2017) Syringaresinol-4-O-β-d-glucoside alters lipid and glucose metabolism in HepG2 cells and C2C12 myotubes. Acta Pharm Sin B 7:453

    Article  PubMed  PubMed Central  Google Scholar 

  315. Park S, Kim N, Yoo G, Kim SN, Kwon H-J, Jung K, Oh D-C, Lee Y-H, Kim SH (2017) Phenolics and neolignans isolated from the fruits of Juglans mandshurica Maxim., and their effects on lipolysis in adipocytes. Phytochemistry 137:87

    Article  CAS  PubMed  Google Scholar 

  316. Leong JJ, Sumilan H, Siong HC, Michael FL (2016) Smoking and its impacts on absenteeism and stress: a preliminary study. J Cogn Sci Hum Dev 2:13

    Google Scholar 

  317. Song J-S, Kim E-K, Choi Y-W, Oh WK, Kim Y-M (2016) Hepatocyte-protective effect of nectandrin B, a nutmeg lignan, against oxidative stress: role of Nrf2 activation through ERK phosphorylation and AMPK-dependent inhibition of GSK-3β. Toxicol Appl Pharmacol 307:138

    Article  CAS  PubMed  Google Scholar 

  318. Taher M, Amiroudine MZAM, Jaffri JM, Amri MS, Susanti D, Abd Hamid S, Rezali MF, Hassan CM, Read RW, Ahmed Q, Ahmad F (2017) A lignan with glucose uptake activity in 3T3-L1 adipocytes from the stem bark of Knema patentinervia. Pak J Pharm Sci 30:1335

    CAS  PubMed  Google Scholar 

  319. Zeng W, Yao C-P, Xu P-S, Zhang G-G, Liu Z-Q, Xu K-P, Zou Z-X, Tan G-S (2017) A new neolignan from Selaginella moellendorffii Hieron. Nat Prod Res 31:2223

    Article  CAS  PubMed  Google Scholar 

  320. Ridley RG, Fairlamb AH, Vial HJ (eds) (2003) Drugs against parasitic diseases: R&D methodologies and issues. TDR (WHO ref. no. TDR/PRD 03.1)

    Google Scholar 

  321. Fournet A, Munoz V (2005) Natural products as trypanocidal, antileishmanial, and antimalarial drugs. Curr Top Med Chem 2:1215

    Article  Google Scholar 

  322. World Health Organization (2000) WHO report on global surveillance of epidemic-prone infectious diseases. https://www.who.int/csr/resources/publications/surveillance/WHO_CDS_CSR_ISR_2000_1/en/

  323. World Health Organization (2010) Control of the leishmaniases. Report of a meeting of the WHO expert committee on the control of leishmaniases, Geneva, 22–26 March 2010. In: WHO Tech. Rep. Ser. https://apps.who.int/iris/handle/10665/44412

  324. Bruschi F, Gradoni L(eds) (2018) The leishmaniases: old neglected tropical diseases. Springer International Publishers, Cham, Switzerland

    Google Scholar 

  325. Foster S, Phillips M (1998) Economics and its contribution to the fight against malaria. Ann Trop Med Parasitol 92:391

    Article  CAS  PubMed  Google Scholar 

  326. Houghton PJ (1991) Investigation of plants used in traditional medicine. Int Pharm J 5:29

    Google Scholar 

  327. Hofheinz W, Merkli B (1991) Quinine and quinine analogs. Antimalarial drug II. In Peters W, Richard WHG (eds) Current antimalarial and new drug development. Springer, Heidelberg, New York, and Tokyo

    Google Scholar 

  328. Meshnick SR, Thomas A, Ranz A, Xu C-M, Pan H-Z (1991) Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 49:181

    Article  CAS  PubMed  Google Scholar 

  329. White NJ (1998) Preventing antimalarial drug resistance through combinations. Drug Resist Updat 1:3

    Article  CAS  PubMed  Google Scholar 

  330. World Health Organization, Malaria Unit, Division of Control of Tropical Diseases, Consultation R of JCI (1998) The use of artemisinin and its derivatives as antimalarial drugs. https://www.who.int/malaria/publications/atoz/who_mal_98_1086/en/

  331. Kirchhoff LV (1993) American trypanosomiasis (Chagas’ disease)—a tropical disease now in the United States. N Engl J Med 329:639

    Article  CAS  PubMed  Google Scholar 

  332. de Andrade AL, Zicker F, de Oliveira RM, Almeiida Silva S, Luquetti A, Travassos LR, Almeida IC, de Andrade SS, de Andrade JG, Martelli CM (1996) Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 348:1407

    Article  PubMed  Google Scholar 

  333. Rodrigues JCF, Godinho JLP, de Souza W (2014) Biology of human pathogenic trypanosomatids: epidemiology, lifecyle and ultrastructure. In: Santos A, Branquinha M, d’Avila-Levy C, Kneipp L, Sodré (eds) Proteins and proteinomics of Leishmania and Trypanosoma. Subcellular biochemistry, vol 74. Springer, Dordrecht, p 1

    Google Scholar 

  334. World Health Organization (1995) The current global situation of the HIV/AIDS pandemic. Wkly Epidemiol Rec 70:355

    Google Scholar 

  335. World Health Organization (2000) The leishmaniasis. Technical report series. https://apps.who.int/iris/bitstream/handle/10665/44412/WHO_TRS_949_eng.pdf?sequence=1

  336. Bastos JK, Albuquerque S, Silva ML (1999) Evaluation of the trypanocidal activity of lignans isolated from the leaves of Zanthoxylum naranjillo. Planta Med 65:541

    Article  CAS  PubMed  Google Scholar 

  337. Ribeiro A, Piló-Veloso D, Romanha AJ, Zani CL (1997) Trypanocidal flavonoids from Trixis vauthieri. J Nat Prod 60:836

    Article  CAS  PubMed  Google Scholar 

  338. Souza DHF, Garratt RC, Araújo APU, Guimaraes BG, Jesus WDP, Michels PAM, Hannaert V, Oliva G (1998) Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase: structure, catalytic mechanism and targeted inhibitor design. FEBS Lett 424:131

    Article  CAS  PubMed  Google Scholar 

  339. Tomazela DM, Pupo MT, Passador EA, da Silva MF, Vieira PC, Fernandes JB, Fo JB, Oliva G, Pirani JR (2000) Pyrano chalcones and a flavone from Neoraputia magnifica and their Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase-inhibitory activities. Phytochemistry 55:643

    Article  CAS  PubMed  Google Scholar 

  340. Oketch-Rabah HA, Dossaji SF, Christensen SB, Frydenvang K, Lemmich E, Cornett C, Olsen CE, Chen M, Kharazmi A, Theander T (1997) Antiprotozoal compounds from Asparagus africanus. J Nat Prod 60:1017

    Article  CAS  PubMed  Google Scholar 

  341. Sauvain M, Kunesch N, Poisson J, Gantier JC, Gayral P, Dedet JP (1996) Isolation of leishmanicidal triterpenes and lignans from the Amazonian liana Doliocarpus dentatus (Dilleniaceae). Phytother Res 10:1

    Google Scholar 

  342. Joel Cabanillas B, Le Lamer A-C, Castillo D, Arevalo J, Rojas R, Odonne G, Bourdy G, Moukarzel B, Sauvain M, Fabre N (2010) Caffeic acid esters and lignans from Piper sanguineispicum. J Nat Prod 73:1884

    Article  Google Scholar 

  343. Akendengue B, Ngou-Milama E, Laurens A, Hocquemiller R (1999) Recent advances in the fight against leishmaniasis. Parasite 6:3

    Article  CAS  PubMed  Google Scholar 

  344. Akendengue B, Roblot F, Loiseau PM, Bories C, Ngou-Milana E, Laurens A, Hocquemiller R (2002) Klaivanolide, an antiprotozoal lactone from Uvaria klaineana. Phytochemistry 59:885

    Article  CAS  PubMed  Google Scholar 

  345. Barata LE, Santos LS, Ferri PH, Phillipson JD, Paine A, Croft SL (2000) Anti-leishmanial activity of neolignans from Virola species and synthetic analogues. Phytochemistry 55:589

    Article  CAS  PubMed  Google Scholar 

  346. Torres-Santos EC, Moreira DL, Kaplan MA, Meirelles MN, Rossi-Bergmann B (1999) Selective effect of 2′,6′-dihydroxy-4′-methoxychalcone isolated from Piper aduncum on Leishmania amazonensis. Antimicrob Agents Chemother 43:1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Nogueira CR, Lopes LMX (2011) Antiplasmodial natural products. Molecules 16:2146

    Article  CAS  PubMed Central  Google Scholar 

  348. Bero J, Quetin-Leclercq J (2011) Natural products published in 2009 from plants traditionally used to treat malaria. Planta Med 77:631

    Article  CAS  PubMed  Google Scholar 

  349. Marcotullio MC, Pelosi A, Curini M (2014) Hinokinin, an emerging bioactive lignan. Molecules 19:14862

    Article  PubMed  PubMed Central  Google Scholar 

  350. Long H, Zhang H, Deng A, Ma L, Wu L, Li Z, Zhang Z, Wang W, Jiang J, Qin H (2016) Three new lignan glucosides from the roots of Scutellaria baicalensis. Acta Pharm Sin B 6:229

    Article  PubMed  PubMed Central  Google Scholar 

  351. Lee W, Ko KR, Kim H, Lee DS, Nam IJ, Lim S, Kim S (2018) Dehydrodiconiferyl alcohol inhibits osteoclast differentiation and ovariectomy-induced bone loss through acting as an estrogen receptor agonist. J Nat Prod 81:1343

    Article  CAS  PubMed  Google Scholar 

  352. Lee W, Ko KR, Kim H, Lim S, Kim S (2018) Dehydrodiconiferyl alcohol promotes BMP-2-induced osteoblastogenesis through its agonistic effects on estrogen receptor. Biochem Biophys Res Commun 495:2242

    Article  CAS  PubMed  Google Scholar 

  353. Narakornsak S, Aungsuchawan S, Pothacharoen P, Markmee R, Tancharoen W, Laowanitwattana T, Thaojamnong C, Peerapapong L, Boonma N, Tasuya W, Keawdee J, Poovachiranon N (2017) Sesamin encouraging effects on chondrogenic differentiation of human amniotic fluid-derived mesenchymal stem cells. Acta Histochem 119:451

    Article  CAS  PubMed  Google Scholar 

  354. Riley PA (2003) Melanogenesis and melanoma. Pigment Cell Res 16:548

    Article  CAS  PubMed  Google Scholar 

  355. Shin Y, Jang EJ, Park HJ, Hong J-Y, Kang SS, Lee SK (2016) Suppression of melanin synthesis by americanin A in melan-a cells via regulation of microphthalmia-associated transcription factor. Exp Dermatol 25:646

    Article  CAS  PubMed  Google Scholar 

  356. Chae JK, Subedi L, Jeong M, Park YU, Kim CY, Kim H, Kim SY (2017) Gomisin N inhibits melanogenesis through regulating the PI3K/Akt and MAPK/ERK signaling pathways in melanocytes. Int J Mol Sci 18:471

    Article  PubMed Central  Google Scholar 

  357. Narukawa Y, Komatsu C, Yamauchi R, Shibayama S, Hachisuka M, Kiuchi F (2016) Two new lignans and melanogenesis inhibitors from Schisandra nigra. J Nat Med 70:460

    Article  CAS  PubMed  Google Scholar 

  358. Dykstra DW, Dalby KN, Ren P (2013) Elucidating binding modes of zuonin A enantiomers to JNK1 via in silico methods. J Mol Graph Model 45:38

    Article  CAS  PubMed  Google Scholar 

  359. Manse Y, Ninomiya K, Nishi R, Kamei I, Katsuyama Y, Imagawa T, Chaipech S, Muraoka O, Morikawa T (2016) Melanogenesis inhibitory activity of a 7-O-9′-linked neolignan from Alpinia galanga fruit. Bioorg Med Chem 24:6215

    Article  CAS  PubMed  Google Scholar 

  360. Jenab M, Thompson LU (1996) The influence of flaxseed and lignans on colon carcinogenesis and β-glucuronidase activity. Carcinogenesis 17:1343

    Article  CAS  PubMed  Google Scholar 

  361. Cheng X, Wang H, Yang J, Cheng Y, Wang D, Yang F, Li Y, Zhou D, Wang Y, Xue Z, Zhang L, Zhang Q, Yang L, Zhang R, Da D (2018) Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice. Biomed Pharmacother 102:464

    Article  CAS  PubMed  Google Scholar 

  362. Li F, Zhang T, Sun H, Gu H, Wang H, Su X, Li C, Li B, Chen R, Kang J (2017) A new nortriterpenoid, a sesquiterpene and hepatoprotective lignans isolated from the fruit of Schisandra chinensis. Molecules 22:1931

    Article  PubMed Central  Google Scholar 

  363. Wang G-W, Deng L-Q, Luo Y-P, Liao Z-H, Chen M (2017) Hepatoprotective triterpenoids and lignans from the stems of Schisandra pubescens. Nat Prod Res 31:1855

    Article  CAS  PubMed  Google Scholar 

  364. Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Novellino E, Santini A (2019) Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res 33:2221

    Article  Google Scholar 

  365. Vinson JA (2019) Intracellular polyphenols: how little we know. J Agric Food Chem 67:3865

    Article  CAS  PubMed  Google Scholar 

  366. Schilter B, Andersson C, Anton R, Constable A, Kleiner J, O’Brien J, Renwick AG, Korver O, Smit F, Walker R (2003) Guidance for the safety assessment of botanicals and botanical preparations for use in food and food supplements. Food Chem Toxicol 41:1625

    Article  CAS  PubMed  Google Scholar 

  367. Ross JA, Potter JD, Robison LL (1994) Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J Natl Cancer Inst 86:1678

    Article  CAS  PubMed  Google Scholar 

  368. Lambert JD, Sang S, Yang CS (2007) Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol 20:583

    Article  CAS  PubMed  Google Scholar 

  369. Konrádová D, Kozubíková H, Doležal K, Pospíšil J (2017) Microwave-assisted synthesis of phenylpropanoids and coumarins: total synthesis of osthol. Eur J Org Chem 2017:5204

    Article  Google Scholar 

  370. Barbuščáková Z, Kozubíková H, Zálešák F, Doležal K, Pospíšil J (2018) General approach to neolignan-core of the Boehmenan natural product family. Monatsh Chem – Chem Monthly 149:737

    Google Scholar 

  371. Grúz J, Pospíšil J, Kozubíková H, Pospíšil T, Doležal K, Bunzel M, Strnad M (2015) Determination of free diferulic, disinapic and dicoumaric acids in plants and foods. Food Chem 171:280

    Article  PubMed  Google Scholar 

  372. Pospíšil J (2020) 1-(Phenylsulfonyl)-3-oxabicyclo[3.1.0]hexan-2-one. In: Encyclopedia of reagents for organic synthesis. Wiley Online Library, p 1

    Google Scholar 

  373. Konrádová D, Bon DJ-YD, Pospíšil J (2018) 1-(Phenylsulfonyl)-3-oxabicyclo[3.1.0]hexan-2-one as a building block in organic synthesis. J Org Chem 83:12229

    Google Scholar 

Download references

Acknowledgments

This work was financed by the European Regional Development Fund-Project “Centre for Experimental Plant Biology” (grant number CZ.02.1.01/0.0/0.0/16_019/0000738). For their continual support, J.P. is grateful to Prof. M. Strnad, Dr K. Doležal, and Prof. J. Hlaváč (Palacky University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Konrádová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pospíšil, J., Konrádová, D., Strnad, M. (2021). Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Progress in the Chemistry of Organic Natural Products 115. Progress in the Chemistry of Organic Natural Products, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-030-64853-4_3

Download citation

Publish with us

Policies and ethics