Skip to main content

Functionalities and Implementation of Future Informational Assistance Systems for Manual Assembly

Towards Individualized, Incentive-Based Assistance and Support of Ergonomics

  • Conference paper
  • First Online:
Subject-Oriented Business Process Management. The Digital Workplace – Nucleus of Transformation (S-BPM ONE 2020)

Abstract

The demand for customized products increases, leading to smaller product volumes and batch sizes, down to batch size one. The necessary flexibility and variety places high demands on assembly and increases the complexity. Therefore, the automation of manual assembly processes is often not cost-effective. To cope with these basic conditions, workers in the manual assembly should be supported cognitively by informational assistance systems. In addition to the typical product- and process-related aspects, adaptable human-centered functionalities must be considered, aiming to improve productivity, quality, workers’ health, and motivation. Thus, this paper examines the assistance functionalities that future assistance systems should provide for manual assembly processes and presents approaches for their implementation. Design Science Research is the framework for our research activities. The starting point is the analysis of existing assembly assistance systems and a determination of process optimization potentials. Through interviews with experts and the modeling of a manual assembly process, we determine the support dimensions and required functionalities for future assistance systems. Subsequently, the overall system architecture and the subsystems are designed and implemented. Intelligent image processing and deep learning algorithms are the basis for process progress recognition and analysis of the ergonomic situation. Gamification and augmented reality are further methods used. The processual changes resulting from the application of the presented novel assistance system are modeled in a case study, and the optimized aspects and implications for both workers and companies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ElMaraghy, H., et al.: Product variety management. CIRP Ann – Manuf. Technol. 62, 629–652 (2013). https://doi.org/10.1016/j.cirp.2013.05.007

    Article  Google Scholar 

  2. Scholz-Reiter, B., Freitag, M.: Autonomous processes in assembly systems. CIRP Ann. 56, 712–729 (2007). https://doi.org/10.1016/j.cirp.2007.10.002

    Article  Google Scholar 

  3. Harari, N.S., Fundin, A., Carlsson, A.L.: Components of the design process of flexible and reconfigurable assembly systems. Procedia Manuf. 25, 549–556 (2018). https://doi.org/10.1016/j.promfg.2018.06.118

    Article  Google Scholar 

  4. Müller, R., Vette-Steinkamp, M., Hörauf, L., Speicher, C., Bashir, A.: Worker centered cognitive assistance for dynamically created repairing jobs in rework area. Procedia CIRP 72, 141–146 (2018). https://doi.org/10.1016/j.procir.2018.03.137

    Article  Google Scholar 

  5. Andrianakos, G., et al.: An approach for monitoring the execution human based assembly operations using machine learning. Procedia CIRP 86, 198–203 (2020). https://doi.org/10.1016/j.procir.2020.01.040

    Article  Google Scholar 

  6. Faccio, M., Ferrari, E., Galizia, F.G., Gamberi, M., Pilati, F.: Real-time assistance to manual assembly through depth camera and visual feedback. Procedia CIRP 81, 1254–1259 (2019). https://doi.org/10.1016/j.procir.2019.03.303

    Article  Google Scholar 

  7. Keller, T., Bayer, C., Bausch, P., Metternich, J.: Benefit evaluation of digital assistance systems for assembly workstations. Procedia CIRP 81, 441–446 (2019). https://doi.org/10.1016/j.procir.2019.03.076

    Article  Google Scholar 

  8. Lampen, E., Teuber, J., Gaisbauer, F., Bär, T., Pfeiffer, T., Wachsmuth, S.: Combining simulation and augmented reality methods for enhanced worker assistance in manual assembly. Procedia CIRP 81, 588–659 (2019). https://doi.org/10.1016/j.procir.2019.03.160

    Article  Google Scholar 

  9. Hinrichsen, S., Bendzioch, S.: How digital assistance systems improve work productivity in assembly. In: Nunes, I.L. (ed.) AHFE 2018. AISC, vol. 781, pp. 332–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94334-3_33

    Chapter  Google Scholar 

  10. Petzoldt, C., Keiser, D., Beinke, T., Freitag, M.: Requirements for an incentive-based assistance system for manual assembly. In: Freitag, M., Haasis, H.-D., Kotzab, H., Pannek, J. (eds.) LDIC 2020. LNL, pp. 541–553. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44783-0_50

    Chapter  Google Scholar 

  11. Sochor, R., Kraus, L., Merkel, L., Braunreuther, S., Reinhart, G.: Approach to increase worker acceptance of cognitive assistance systems in manual assembly. Procedia CIRP 81, 926–931 (2019). https://doi.org/10.1016/j.procir.2019.03.229

    Article  Google Scholar 

  12. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. Manag. Inf. Syst. Q. (MIS Q.) 28, 75–105 (2004). https://doi.org/10.2307/25148625

    Article  Google Scholar 

  13. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007). https://doi.org/10.2753/mis0742-1222240302

    Article  Google Scholar 

  14. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stand Interfaces 34, 124–134 (2012). https://doi.org/10.1016/j.csi.2011.06.002

    Article  Google Scholar 

  15. Asadi, N., Jackson, M., Fundin, A.: Drivers of complexity in a flexible assembly system- a case study. Procedia CIRP 41, 189–194 (2016). https://doi.org/10.1016/j.procir.2015.12.082

    Article  Google Scholar 

  16. VDMA Maschinen- und Anlagenbau Kompetenzmatrix der Assistenzsysteme (2018). https://www.vdma.org/v2viewer/-/v2article/render/26008848. Accessed 20 Feb 2020

  17. Bundesministerium für Gesundheit Betriebliche Gesundheitsförderung – Vorteile (2019). https://www.bundesgesundheitsministerium.de/themen/praevention/betriebliche-gesundheitsfoerderung/vorteile.html. Accessed 30 Sep 2019

  18. Resnick, M.L., Zanotti, A.: Using ergonomics to target productivity improvements. Comput. Ind. Eng. 33, 185–188 (1997). https://doi.org/10.1016/s0360-8352(97)00070-3

    Article  Google Scholar 

  19. Eklund, J.A.E.: Relationships between ergonomics and quality in assembly work. Appl. Ergon. 26, 15–22 (1995). https://doi.org/10.1016/0003-6870(95)95747-n

    Article  Google Scholar 

  20. Lin, L., Drury, C.G., Kim, S.W.: Ergonomics and quality in paced assembly lines. Hum. Factors Ergon. Manuf. 11, 377–382 (2001). https://doi.org/10.1002/hfm.1020

    Article  Google Scholar 

  21. Bornewasser, M., Bläsing, D., Hinrichsen, S.: Informatorische Assistenzsysteme in der manuellen Montage: Ein nützliches Werkzeug zur Reduktion mentaler Beanspruchung? Zeitschrift für Arbeitswissenschaft 72(4), 264–275 (2018). https://doi.org/10.1007/s41449-018-0123-x

    Article  Google Scholar 

  22. Hemphälä, H., Eklund, J.: A visual ergonomics intervention in mail sorting facilities: effects on eyes, muscles and productivity. Appl. Ergon. 43, 217–229 (2012). https://doi.org/10.1016/j.apergo.2011.05.006

    Article  Google Scholar 

  23. Carlopio, J.R., Gardner, D.: Direct and interactive effects of the physical work environment on attitudes. Environ. Behav. 24, 579–601 (1992)

    Article  Google Scholar 

  24. Moore, S.M., Torma-Krajewski, J., Steiner, L.J.: Practical demonstrations of ergonomic principles. Rep. Invest. 9684(2011–191), 1–57 (2011)

    Google Scholar 

  25. DIN EN ISO 6385. Ergonomics principles in the design of work systems (ISO 6385:2016); German version EN ISO 6385:2016 (2016)

    Google Scholar 

  26. Daub, U., Gawlick, S., Blab, F.: Ergonomische Arbeitsplatzgestaltung: Prinzipien aus Trainings-, Sport- und Arbeitswissenschaft zur Entlastung des Bewegungsapparates. Stuttgart (2018)

    Google Scholar 

  27. DIN EN 12464-1. Light and lighting - Lighting of work places - Part 1: Indoor work places; German version EN 12464-1:2011 (2011)

    Google Scholar 

  28. Fraunhofer, I.P.A., Daub, U.: Ergonomic Assembly 4.0 (2017)

    Google Scholar 

  29. Funk, M., Kosch, T., Kettner, R., Korn, O., Schmidt, A.: motionEAP: an overview of 4 years of combining industrial assembly with augmented reality for industry 4.0. In: Proceedings of 16th International Conference Knowledge Technologies and Data-driven Business, pp. 2–5 (2016)

    Google Scholar 

  30. Fraunhofer IOSB-INA, Röcker C: XTEND Assistance System (2018)

    Google Scholar 

  31. Arkite, B.V.: ARKITE Human Interface Mate (2016). https://www.arkite.be/him/. Accessed 24 Feb 2020

  32. Lange, W., Windel, A.: Kleine Ergonomische Datensammlung, 16th edn. TÜV Media GmbH, Dortmund (2017)

    Google Scholar 

  33. Claeys, A., Hoedt, S., Van Landeghem, H., Cottyn, J.: Generic model for managing context-aware assembly instructions. IFAC-PapersOnLine 49, 1181–1186 (2016). https://doi.org/10.1016/j.ifacol.2016.07.666

    Article  Google Scholar 

  34. Mattsson, S., Fast-Berglund, L.D.: Evaluation of guidelines for assembly instructions. IFAC-PapersOnLine 49, 209–214 (2016). https://doi.org/10.1016/j.ifacol.2016.07.598

    Article  Google Scholar 

  35. Korn, O.: Context-Aware Assistive Systems for Augmented Work . A Framework Using Gamification and Projection. Universität Stuttgart (2014)

    Google Scholar 

  36. Hinrichsen, D., Riediger, D., Unrau, A.: Assistance systems in manual assembly. In: Production Engineering and Management. 6th International Conference. OWL University of Applied Sciences, Lemgo, pp. 3–14 (2016)

    Google Scholar 

  37. DIN 33402-2. Ergonomics - Human body dimensions - Part 2: Values, Corrigenda to DIN 33402-2:2005-12 (2007)

    Google Scholar 

  38. Zare, M., Bodin, J., Cercier, E., Brunet, R., Roquelaure, Y.: Evaluation of ergonomic approach and musculoskeletal disorders in two different organizations in a truck assembly plant. Int. J. Ind. Ergon. 50, 34–42 (2015). https://doi.org/10.1016/j.ergon.2015.09.009

    Article  Google Scholar 

  39. Romero, D., et al.: Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In: International Conference on Computers & Industrial Engineering (CIE46), Tianjin, China, pp. 1–11 (2016)

    Google Scholar 

  40. Schuldt, J., Friedemann, S.: The challenges of gamification in the age of industry 4.0: focusing on man in future machine-driven working environments. In: IEEE Global Engineering Education Conference, EDUCON, pp 1622–1630. IEEE Computer Society (2017)

    Google Scholar 

  41. Koivisto, J., Hamari, J.: Demographic differences in perceived benefits from gamification. Comput. Hum. Behav. 35, 179–188 (2014). https://doi.org/10.1016/j.chb.2014.03.007

    Article  Google Scholar 

  42. Beinke, T., Freitag, M., Schamann, A., Feldmann, K.: Beruflich-betriebliche Weiterbildung 4.0 - Gamification im E-Learning in Verbindung mit individueller Spieleapplikation für die mitarbeiterorientierte Weiterbildung der Zukunft. Ind. 4.0 Manag. 35, 13–17 (2019). https://doi.org/10.1016/j.enavi.2017.05.006

  43. Keiser, D., Petzoldt, C., Beinke, T., Freitag, M.: Einsatz von Gamification zur Motivationssteigerung in manuellen Montageassistenzsystemen - Methodik zur Auswahl geeigneter Spiel-Design-Elemente. Ind. 4.0 Manag. 38, 49–52 (2020)

    Google Scholar 

  44. Karbasi, M., et al.: Real-Time Hand detection by depth images: a survey. J. Teknol. 78 (2016). https://doi.org/10.11113/jt.v78.5292

  45. Kinali, G., Kara, S., Yıldırım, M.S.: Electromyographic analysis of an ergonomic risk factor: overhead work. J. Phys. Ther. Sci. 28, 1924–1927 (2016). https://doi.org/10.1589/jpts.28.1924

    Article  Google Scholar 

  46. Lowe, B.D., et al.: Evaluation of a workplace exercise program for control of shoulder disorders in overhead assembly work. J. Occup. Environ. Med. 59, 563–570 (2017). https://doi.org/10.1097/jom.0000000000001030

    Article  Google Scholar 

  47. Sood, D., Nussbaum, M.A., Hager, K.: Fatigue during prolonged intermittent overhead work: reliability of measures and effects of working height. Ergonomics 50, 497–513 (2007). https://doi.org/10.1080/00140130601133800

    Article  Google Scholar 

  48. Khan, N.U., Wan, W.: A review of human pose estimation from single image. In: ICALIP 2018 - 6th International Conference on Audio, Language and Image Processing. Institute of Electrical and Electronics Engineers Inc., pp. 230–236 (2018)

    Google Scholar 

  49. Dang, Q., Yin, J., Wang, B., Zheng, W.: Deep learning based 2D human pose estimation: a survey. Tsinghua Sci. Technol. 24, 663–676 (2019). https://doi.org/10.26599/tst.2018.9010100

  50. Sarafianos, N., Boteanu, B., Ionescu, B., Kakadiaris, I.A.: 3D Human pose estimation: a review of the literature and analysis of covariates. Comput. Vis. Image Underst. 152, 1–20 (2016). https://doi.org/10.1016/j.cviu.2016.09.002

    Article  Google Scholar 

  51. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: ICCV (2017)

    Google Scholar 

  52. Li, J., et al.: CrowdPose: efficient crowded scenes pose estimation and a new benchmark. In: Proceedings of IEEE Computer Society of Conference on Computer Vision and Pattern Recognition, June 2019, pp. 10855–10864 (2018)

    Google Scholar 

  53. Xiu, Y., Li, J., Wang, H., Fang, Y., Lu, C.: Pose flow: efficient online pose tracking. In: British Machine Vision Conference, BMVC 2018 (2018)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the European Regional Development Fund (EFRE) and the Bremer Aufbau-Bank (BAB) for their support within the project AxIoM - Gamified AI assistance system for support of manual assembly processes (funding code: FUE0619B). We would like to thank Jichen Guo, Fabian Siekmann, Muhammad Husnain Ul Abdeen, and Joel Egharevba for their valuable contributions to literature research and algorithm implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Petzoldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petzoldt, C., Keiser, D., Beinke, T., Freitag, M. (2020). Functionalities and Implementation of Future Informational Assistance Systems for Manual Assembly. In: Freitag, M., Kinra, A., Kotzab, H., Kreowski, HJ., Thoben, KD. (eds) Subject-Oriented Business Process Management. The Digital Workplace – Nucleus of Transformation. S-BPM ONE 2020. Communications in Computer and Information Science, vol 1278. Springer, Cham. https://doi.org/10.1007/978-3-030-64351-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64351-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64350-8

  • Online ISBN: 978-3-030-64351-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics