Skip to main content

Quantum Candies and Quantum Cryptography

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12494))

Abstract

The field of quantum information is becoming more known to the general public. However, effectively demonstrating the concepts underneath quantum science and technology to the general public can be a challenging job. We investigate, extend, and much expand here “quantum candies” (invented by Jacobs), a pedagogical model for intuitively describing some basic concepts in quantum information, including quantum bits, complementarity, the no-cloning principle, and entanglement. Following Jacob’s quantum candies description of the well known quantum key distribution protocol BB84, we explicitly demonstrate various additional quantum cryptography protocols using quantum candies in an approachable manner. The model we investigate can be a valuable tool for science and engineering educators who would like to help the general public to gain more insights about quantum science and technology: most parts of this paper, including many protocols for quantum cryptography, are expected to be easily understandable by a layperson without any previous knowledge of mathematics, physics, or cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other forms of the principle exist, e.g., that elementary particles like electrons or photons have both particle characteristics and wave characteristics.

  2. 2.

    The classical channel is assumed to be insecure yet unjammable.

  3. 3.

    If Bob can keep the qandies un-measured in a qandies’ memory, the bit rate can be doubled, as he will taste or look only after learning Alice’s preparation method.

  4. 4.

    Interestingly having just two specific properties (two colors etc.) and having four general properties—e.g. color, taste, texture, and smell, is not consistent with the rules of quantum theory.

  5. 5.

    There is a similar protocol if Bob has no memory, with a slightly different analysis.

References

  1. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49(25), 1804–1807 (1982). https://doi.org/10.1103/PhysRevLett.49.1804

    Article  MathSciNet  Google Scholar 

  2. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : a new violation of Bell’s inequalities. Phys. Rev. Lett. 49(2), 91–94 (1982). https://doi.org/10.1103/PhysRevLett.49.91

    Article  Google Scholar 

  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1(3), 195–200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

    Google Scholar 

  6. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992). https://doi.org/10.1103/PhysRevLett.68.557

    Article  MathSciNet  MATH  Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  MATH  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  MathSciNet  MATH  Google Scholar 

  9. Jacobs, K.: Private communication (2009)

    Google Scholar 

  10. Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2004). https://doi.org/10.1007/s00145-004-0142-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414–3417 (1997). https://doi.org/10.1103/PhysRevLett.78.3414

    Article  Google Scholar 

  12. Mor, T.: No cloning of orthogonal states in composite systems. Phys. Rev. Lett. 80(14), 3137–3140 (1998). https://doi.org/10.1103/PhysRevLett.80.3137

    Article  Google Scholar 

  13. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000). https://doi.org/10.1103/PhysRevLett.85.441

    Article  Google Scholar 

  14. Svozil, K.: Staging quantum cryptography with chocolate balls. Am. J. Phys. 74(9), 800–803 (2006). https://doi.org/10.1119/1.2205879

    Article  Google Scholar 

  15. Svozil, K.: Non-contextual chocolate balls versus value indefinite quantum cryptography. Theoret. Comput. Sci. 560(P1), 82–90 (2014). https://doi.org/10.1016/j.tcs.2014.09.019

    Article  MathSciNet  MATH  Google Scholar 

  16. Wright, R.: Generalized urn models. Found. Phys. 20(7), 881–903 (1990). https://doi.org/10.1007/BF01889696

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J.L. and T.M. thank the Schwartz/Reisman Foundation. J.L. is supported by NSERC Canada. T.M. was also partially supported by Israeli MOD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junan Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, J., Mor, T. (2020). Quantum Candies and Quantum Cryptography. In: Martín-Vide, C., Vega-Rodríguez, M.A., Yang, MS. (eds) Theory and Practice of Natural Computing. TPNC 2020. Lecture Notes in Computer Science(), vol 12494. Springer, Cham. https://doi.org/10.1007/978-3-030-63000-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63000-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62999-1

  • Online ISBN: 978-3-030-63000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics