Advertisement

Fast Byzantine Gathering with Visibility in Graphs

  • Avery MillerEmail author
  • Ullash Saha
Conference paper
  • 34 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12503)

Abstract

We consider the gathering task by a team of m synchronous mobile robots in a graph of n nodes. Each robot has an identifier (ID) and runs its own deterministic algorithm, i.e., there is no centralized coordinator. We consider a particularly challenging scenario: there are f Byzantine robots in the team that can behave arbitrarily, and even have the ability to change their IDs to any value at any time. There is no way to distinguish these robots from non-faulty robots, other than perhaps observing strange or unexpected behaviour. The goal of the gathering task is to eventually have all non-faulty robots located at the same node in the same round. It is known that no algorithm can solve this task unless there at least \(f+1\) non-faulty robots in the team. In this paper, we design an algorithm that runs in polynomial time with respect to n and m that matches this bound, i.e., it works in a team that has exactly \(f+1\) non-faulty robots. In our model, we have equipped the robots with sensors that enable each robot to see the subgraph (including robots) within some distance H of its current node. We prove that the gathering task is solvable if this visibility range H is at least the radius of the graph, and not solvable if H is any fixed constant.

Keywords

Robot gathering Byzantine faults Visibility Graphs Distributed algorithms 

Notes

Acknowledgements

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), Discovery Grant RGPIN–2017–05936.

References

  1. 1.
    Barrameda, E.M., Santoro, N., Shi, W., Taleb, N.: Sensor deployment by a robot in an unknown orthogonal region: achieving full coverage. In: 20th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2014, pp. 951–960 (2014).  https://doi.org/10.1109/PADSW.2014.7097915
  2. 2.
    Barrière, L., Flocchini, P., Barrameda, E.M., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(3), 679–697 (2011).  https://doi.org/10.1142/S0129054111008295MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bhagat, S., Mukhopadhyaya, K., Mukhopadhyaya, S.: Computation under restricted visibility. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 134–183. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11072-7_7CrossRefzbMATHGoogle Scholar
  4. 4.
    Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks. Distrib. Comput. 29(6), 435–457 (2016).  https://doi.org/10.1007/s00446-016-0276-9MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bouchard, S., Dieudonné, Y., Lamani, A.: Byzantine gathering in polynomial time. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, pp. 147:1–147:15 (2018).  https://doi.org/10.4230/LIPIcs.ICALP.2018.147
  6. 6.
    Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Rendezvous in networks in spite of delay faults. Distrib. Comput. 29(3), 187–205 (2015).  https://doi.org/10.1007/s00446-015-0259-2MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chalopin, J., Godard, E., Naudin, A.: Anonymous graph exploration with binoculars. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 107–122. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48653-5_8CrossRefGoogle Scholar
  8. 8.
    Cicerone, S., Stefano, G.D., Navarra, A.: Asynchronous robots on graphs: gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 184–217. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11072-D7_8CrossRefzbMATHGoogle Scholar
  9. 9.
    Défago, X., Potop-Butucaru, M., Tixeuil, S.: Fault-tolerant mobile robots. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 234–251. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11072-7_10CrossRefGoogle Scholar
  10. 10.
    Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms (TALG) 11(1), 1 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering anonymous, oblivious robots on a grid. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 168–181. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72751-6_13CrossRefGoogle Scholar
  12. 12.
    Flocchini, P.: Gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 63–82. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11072-7_4CrossRefGoogle Scholar
  13. 13.
    Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities. Current Research in Moving and Computing. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11072-7CrossRefGoogle Scholar
  14. 14.
    Hirose, J., Nakamura, J., Ooshita, F., Inoue, M.: Gathering with a strong team in weakly byzantine environments. CoRR abs/2007.08217 (2020). https://arxiv.org/abs/2007.08217
  15. 15.
    Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Boissonnat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics V. STAR, vol. 7, pp. 77–93. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-45058-0_6CrossRefGoogle Scholar
  16. 16.
    Ooshita, F., Datta, A.K., Masuzawa, T.: Self-stabilizing rendezvous of synchronous mobile agents in graphs. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 18–32. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69084-1_2CrossRefGoogle Scholar
  17. 17.
    Pelc, A.: Deterministic gathering with crash faults. Networks 72(2), 182–199 (2018).  https://doi.org/10.1002/net.21810MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pelc, A.: Deterministic rendezvous algorithms. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 423–454. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11072-7_17
  19. 19.
    Tsuchida, M., Ooshita, F., Inoue, M.: Byzantine-tolerant gathering of mobile agents in arbitrary networks with authenticated whiteboards. IEICE Trans. 101–D(3), 602–610 (2018).  https://doi.org/10.1587/transinf.2017FCP0008CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of ManitobaWinnipegCanada

Personalised recommendations