Skip to main content

Fine-Grained Semantics-Aware Heterogeneous Graph Neural Networks

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12342))

Included in the following conference series:

Abstract

Designing a graph neural network for heterogeneous graph which contains different types of nodes and links have attracted increasing attention in recent years. Most existing methods leverage meta-paths to capture the rich semantics in heterogeneous graph. However, in some applications, meta-path fails to capture more subtle semantic differences among different pairs of nodes connected by the same meta-path. In this paper, we propose Fine-grained Semantics-aware Graph Neural Networks (FS-GNN) to learn the node representations by preserving both meta-path level and fine-grained semantics in heterogeneous graph. Specifically, we first use multi-layer graph convolutional networks to capture meta-path level semantics via convolution on edge type-specific weighted adjacent matrices. Then we use the learned meta-path level semantics-aware node representations as guidance to capture the fine-grained semantics via the coarse-to-fine grained attention mechanism. Experimental results semi-supervised node classification show that FS-GNN achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bangcharoensap, P., Murata, T., Kobayashi, H., Shimizu, N.: Transductive classification on heterogeneous information networks with edge betweenness-based normalization. In: WSDM, pp. 437–446 (2016)

    Google Scholar 

  2. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: ICLR (2013)

    Google Scholar 

  3. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: KDD, pp. 135–144 (2017)

    Google Scholar 

  4. Fu, T.Y., Lee, W.C., Lei, Z.: HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: CIKM, pp. 1797–1806 (2017)

    Google Scholar 

  5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feed for leveraging graph wavelet transform to address the short-comings of previous spectral graphrd neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp. 1024–1034 (2017)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  9. Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., Liu, H.: Attributed network embedding for learning in a dynamic environment. In: CIKM, pp. 387–396 (2017)

    Google Scholar 

  10. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural networks. In: AAAI (2018)

    Google Scholar 

  11. Liao, L., He, X., Zhang, H., Chua, T.S.: Attributed social network embedding. TKDE 30(12), 2257–2270 (2018)

    Google Scholar 

  12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  13. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: KDD, pp. 701–710 (2014)

    Google Scholar 

  14. Schütt, K., Kindermans, P.J., Felix, H.E.S., Chmiela, S., Tkatchenko, A., Müller, K.R.: SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. In: NIPS, pp. 991–1001 (2017)

    Google Scholar 

  15. Seongjun, Y., Jeong, M., Kim, R., Kang, J., Kim, H.: Graph transformer networks. In: NIPS, pp. 11960–11970 (2019)

    Google Scholar 

  16. Shi, C., et al.: Deep collaborative filtering with multi-aspect information in heterogeneous networks. TKDE (2019)

    Google Scholar 

  17. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. TKDE 31(2), 357–370 (2018)

    Google Scholar 

  18. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. TKDE 29(1), 17–37 (2016)

    Google Scholar 

  19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. VLDB 4(11), 992–1003 (2011)

    Google Scholar 

  21. Veličković P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  22. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: KDD, pp. 1225–1234 (2016)

    Google Scholar 

  23. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: AAAI (2017)

    Google Scholar 

  24. Wang, X., et al.: Heterogeneous graph attention network. In: WWW, pp. 2022–2032 (2019)

    Google Scholar 

  25. Zhang, C., Swami, A., Chawla, N.V.: SHNE: representation learning for semantic-associated heterogeneous networks. In: WSDM, pp. 690–698 (2019)

    Google Scholar 

  26. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: AAAI (2018)

    Google Scholar 

  27. Zhang, Y., Xiong, Y., Kong, X., Li, S., Mi, J., Zhu, Y.: Deep collective classification in heterogeneous information networks. In: WWW, pp. 399–408 (2018)

    Google Scholar 

  28. Zhang, Y., Tang, J., Yang, Z., Pei, J., Yu, P.S.: COSNET: connecting heterogeneous social networks with local and global consistency. In: KDD, pp. 1485–1494 (2015)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Key Research and Development Program of China (grant No. 2016YFB0801003) and the Strategic Priority Research Program of Chinese Academy of Sciences (grant No. XDC02040400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingwen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhang, Z., Liu, T., Xu, H., Wang, J., Guo, L. (2020). Fine-Grained Semantics-Aware Heterogeneous Graph Neural Networks. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12342. Springer, Cham. https://doi.org/10.1007/978-3-030-62005-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62005-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62004-2

  • Online ISBN: 978-3-030-62005-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics