Advertisement

A Computational Prototype for Electromagnetic Field Pollution Maps in Colombia

Conference paper
  • 482 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1274)

Abstract

This work presents a first computational prototype for Electromagnetic Field (EMF) pollution visualization, as a geographic map for human exposure estimation to potentially harmful levels of electromagnetic radiation. The map is a computational tool including a mobile application that uses a basic EMF mathematical model for estimating levels of exposure in two geographic dimensions based on a limited collection of antennas information from Bogotá City. Our application is intended to be an inexpensive first solution for EMF pollution analysis. This paper shows a first mobile prototype as a result, based on standard free tools, such as Google Maps API and its drawing tools and open access EMF emitters databases.

Keywords

Pollution Data visualization Electromagnetic field Antennas Mobile maps 

References

  1. 1.
    Röösli, M., Frei, P., Mohler, E., Hug, K.: Systematic review on the health effects of exposure to radiofrequency electromagnetic fields from mobile phone base stations. Bull. World Health Organ. 88(12), 887–896 (2010)CrossRefGoogle Scholar
  2. 2.
    Rodríguez-Martín, B., Bielsa-Fernández, P.: Asociación entre las radiaciones de teléfonos móviles y el riesgo tumoral en personas adultas. Gaceta Sanitaria (1426) (2017)Google Scholar
  3. 3.
    OMS. OMS—Campos electromagnéticos y salud pública: teléfonos móviles (2014)Google Scholar
  4. 4.
    Fratu, O., et al.: Comparative study of Radio Mobile and ICS Telecom propagation prediction models for DVB-T. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB, August 2015 (2015)Google Scholar
  5. 5.
    Gonzalez-Rubio, J., Najera, A., Arribas, E.: Comprehensive personal RF-EMF exposure map and its potential use in epidemiological studies. Environ. Res. 149, 105–112 (2016)CrossRefGoogle Scholar
  6. 6.
    Rodríguez, C., Forero, C., Boada, H.: Electromagnetic field measurement method to generate radiation map. In: Proceedings of the 2012 IEEE Colombian Communications Conference (COLCOM), Cali, Colombia. IEEE (2012)Google Scholar
  7. 7.
    Bolte, J.F.B., Eikelboom, T.: Personal radiofrequency electromagnetic field measurements in The Netherlands: exposure level and variability for everyday activities, times of day and types of area. Environ. Int. 48, 133–142 (2012)CrossRefGoogle Scholar
  8. 8.
    World Health Organization. Global health observatory data repository: existence of standards data by country (2014)Google Scholar
  9. 9.
    Agencia Nacional del Espectro. Sistema Nacional de Monitoreo de Campos Electromagnéticos (2013)Google Scholar
  10. 10.
    Agencia Nacional del Espectro - Grupo EMC-UN. Herramienta para la predicción y gestión del espectro radioeléctrico en entornos urbanos. Technical report. Asociación Nacional del Espectro, Bogotá (2016)Google Scholar
  11. 11.
    IEEE Standards Coordinating Committee 28. IEEE C95. 1–1992: IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, vol. 2005. IET (2006)Google Scholar
  12. 12.
    IEEE C95.1-2005. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz (2006)Google Scholar
  13. 13.
    Telecommunication standardization sector of ITU. K.52: Guidance on complying with limits for human exposure to electromagnetic fields. Series K: Protection Against Interference (2017)Google Scholar
  14. 14.
    Telecommunication Standardization Sector of ITU. K.83: Monitoring of electromagnetic field levels. Series K: Protection Against Interference (2011)Google Scholar
  15. 15.
    Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. Wiley, Hoboken (2005)Google Scholar
  16. 16.
    Yacoub, M.D.: Foundations of Mobile Radio Engineering. CRC Press, Boca Raton (1993)Google Scholar
  17. 17.
    Rappaport, T.S.: The wireless revolution. IEEE Commun. Mag. 29, 52–71 (1991)CrossRefGoogle Scholar
  18. 18.
    Rappaport, T.S., Sandhu, S.: Radio-wave propagation for emerging wireless personal-communication systems. IEEE Antennas Propag. Mag. 36(5), 14–24 (1994)CrossRefGoogle Scholar
  19. 19.
    Seidel, S.Y., Rappaport, T.S.: Site-specific propagation prediction for wireless in-building personal communication system design. IEEE Trans. Veh. Technol. 43(4), 879–891 (1994)CrossRefGoogle Scholar
  20. 20.
    Longley, A.G., Rice, P.L.: Prediction of tropospheric radio transmission loss over irregular terrain, a computer method. Technical report. Institute for Telecommunication Sciences, Boulder, Colorado (1968)Google Scholar
  21. 21.
    Durkin, J., Edwards, R.: Computer prediction of service areas for V.H.F. mobile radio networks. In: IEEE (ed.), Proceedings of the Institution of Electrical Engineers, pp. 1493–1500. IET (1969)Google Scholar
  22. 22.
    Okumura, Y., Ohmori, E., Kawano, T., Fukuda, K.: Field strength and its variability in VHF and UHF land-mobile radio service. Rev. Electr. Commun. Lab. 16(9), 825–73 (1968)Google Scholar
  23. 23.
    Hata, M.: Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. VT 29(3), 317–25 (1980)CrossRefGoogle Scholar
  24. 24.
    Walfisch, J., Bertoni, H.L.: A theoretical model of UHF propagation in urban environments. IEEE Trans. Antennas Propag. 36(12), 1788–1796 (1988)CrossRefGoogle Scholar
  25. 25.
    Council Recommendation: Council Recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Technical report. The Council of the European Union (1999)Google Scholar
  26. 26.
    Takeuchi, H., Nonaka, I.: The new new product development game. Harvard Bus. Rev. 64(1), 137–146 (1986)Google Scholar
  27. 27.
    Poppendieck, M.: Principles of lean thinking. IT Manag. Sel. 18, 1–7 (2011)Google Scholar
  28. 28.
    Poppendieck, M., Poppendieck, T.: Introduction to Lean software development: practical approaches for applying lean principles to software development. In: Extreme Programming and Agile Processes in Software Engineering, p. 280 (2005)Google Scholar
  29. 29.
    Unwired Labs: OpenCell Id, the world’s largest open database of cell towers (2019). https://opencellid.org
  30. 30.
    OpenSignal Limited. OpenSignal analytics 2019. https://www.opensignal.com
  31. 31.
    OpenBMap. RadioCells, open-source community project for cell tower and Wifi locations 2019. https://radiocells.org
  32. 32.
    CellMapper. Cell mapper, cellular provider maps (2019). https://www.cellmapper.net

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Electronics EngineeringUniversidad El BosqueBogotáColombia
  2. 2.Systems EngineeringUniversidad de San BuenaventuraBogotáColombia
  3. 3.Electronics EngineeringUniversidad de San BuenaventuraBogotáColombia

Personalised recommendations