Skip to main content

Quantum-over-Classical Advantage in Solving Multiplayer Games

  • Conference paper
  • First Online:
Book cover Reachability Problems (RP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12448))

Included in the following conference series:

Abstract

We study the applicability of quantum algorithms in computational game theory and generalize some results related to Subtraction games, which are sometimes referred to as one-heap Nim games.

In quantum game theory, a subset of Subtraction games became the first explicitly defined class of zero-sum combinatorial games with provable separation between quantum and classical complexity of solving them. For a narrower subset of Subtraction games, an exact quantum sublinear algorithm is known that surpasses all deterministic algorithms for finding solutions with probability 1.

Typically, both Nim and Subtraction games are defined for only two players. We extend some known results to games for three or more players, while maintaining the same classical and quantum complexities: \(\varTheta \left( n^2\right) \) and \(\tilde{O}\left( n^{1.5}\right) \) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in accordance with the chosen numbering of rows and columns of \(\varGamma \), \(\varGamma _{ji}=1 \implies i<j\), so this recursive definition of the function \(\textsc {Win}\) is valid.

  2. 2.

    The term balanced naturally comes from the notion of balanced functions: balanced game \(\varGamma \) is such that its payoff function \(\textsc {Win}\left( \varGamma ,j\right) \) is balanced. Formally, the definition of perfect balancedness should look like \(\forall w: \#\big \{j:{\textsc {Win}\left( \varGamma ,j\right) =w}\big \}_{1 \le j \le n} = \frac{n}{k}\), but we use the little-o notation to extend our results also to almost balanced games.

  3. 3.

    Should one feel that discarding in this step essentially destroys the uniformity of \(\textsc {Win}\left( \varGamma ,j\right) \), they can at step 2 assign each position “w stones”, \(0 \le w < k\), value \(\left( k-w\right) \bmod k\). This will make the last step obsolete, as no failure can occur, and will preserve the perfect uniformity. Our further observations are valid for either kind of picking a random balanced Subtraction game.

  4. 4.

    Formally, these vectors in the complex Hilbert space represent equivalence classes of vectors under multiplication by non-zero complex number. We also note that, for the purposes of this paper and throughout all the algorithms which we mention and refer here, one may assume all complex values to be in \(\mathbb {R}\). However, in other important quantum algorithms the imaginary parts may play an essential role.

References

  1. Ablayev, F., Ablayev, M., Zhexue, H.J., Khadiev, K., Salikhova, N., Wu, D.: On quantum methods for machine learning problems part I: quantum tools. Big Data Min. Anal. 3(1), 41–55 (2019)

    Article  Google Scholar 

  2. Ambainis, A.: Understanding quantum algorithms via query complexity. arXiv preprint arXiv:1712.06349 (2017)

  3. Ambainis, A., et al.: Quantum strategies are better than classical in almost any XOR game. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 25–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_3

    Chapter  Google Scholar 

  4. Ambainis, A., Iraids, J., Kravchenko, D., Virza, M.: Advantage of quantum strategies in random symmetric XOR games. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS, vol. 7721, pp. 57–68. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36046-6_7

    Chapter  Google Scholar 

  5. Ardehali, M.: Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 46, 5375–5378 (1992)

    Article  MathSciNet  Google Scholar 

  6. Benjamin, S.C., Hayden, P.M.: Comment on "quantum games and quantum strategies". Phys. Rev. Lett. 87(6), 069801 (2001)

    Article  Google Scholar 

  7. Benjamin, S.C., Hayden, P.M.: Multi-player quantum games. Phys. Rev. A 64(3), 030301 (2001)

    Article  Google Scholar 

  8. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  9. Brunner, N., Linden, N.: Connection between Bell nonlocality and Bayesian game theory. Nat. Commun. 4, 2057 (2013)

    Article  Google Scholar 

  10. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  MATH  Google Scholar 

  11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)

    MATH  Google Scholar 

  12. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996)

  13. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. van Enk, S.J., Pike, R.: Classical rules in quantum games. Phys. Rev. A 66, 024306 (2002)

    Article  MathSciNet  Google Scholar 

  15. Ferguson, T.S.: Game theory class notes for math 167, fall 2000 (2000). https://www.cs.cmu.edu/afs/cs/academic/class/15859-f01/www/notes/comb.pdf

  16. Groverm, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

    Google Scholar 

  17. Grundy, P.M.: Mathematics and games. Eureka 2, 6–8 (1939)

    Google Scholar 

  18. Huang, Y., Ye, Z., Zheng, S., Li, L.: An exact quantum algorithm for a restricted subtraction game. Int. J. Theoret. Phys. 59(5), 1504–1511 (2020). https://doi.org/10.1007/s10773-020-04418-z

    Article  MathSciNet  MATH  Google Scholar 

  19. Khadiev, K., Safina, L.: Quantum algorithm for dynamic programming approach for DAGs. Applications for Zhegalkin polynomial evaluation and some problems on DAGs. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 150–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19311-9_13

    Chapter  MATH  Google Scholar 

  20. Kravchenko, D., Khadiev, K., Serov, D.: On the quantum and classical complexity of solving subtraction games. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 228–236. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_20

    Chapter  MATH  Google Scholar 

  21. Khan, F.S., Humble, T.S.: Nash embedding and equilibrium in pure quantum states. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 51–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_5

    Chapter  Google Scholar 

  22. Khan, F.S., Solmeyer, N., Balu, R., Humble, T.S.: Quantum games: a review of the history, current state, and interpretation. Quantum Inf. Process. 17(11), 1–42 (2018). https://doi.org/10.1007/s11128-018-2082-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Kravchenko, D.: A new quantization scheme for classical games. In: Proceedings of Workshop on Quantum and Classical Complexity (Satellite event to ICALP 2013), pp. 17–34 (2013)

    Google Scholar 

  24. Kravchenko, D.: Quantum entanglement in a zero-sum game. Contrib. Game Theory Manag. 8, 149–163 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Li, Y.D.: BQP and PPAD. arXiv:1108.0223 (2011)

  26. Long, G.-L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)

    Article  MathSciNet  Google Scholar 

  27. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mermin, D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 15 (1990)

    MathSciNet  MATH  Google Scholar 

  29. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muhammad, S., Tavakoli, A., Kurant, M., Pawlowski, M., Zukowski, M., Bourennane, M.: Quantum bidding in bridge. Phys. Rev. X 4, 021047 (2014)

    Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  32. Phoenix, S.J.D., Khan, F.S.: Preferences in quantum games. Phys. Lett. A 384(15) (2020)

    Google Scholar 

  33. Phoenix, S.J.D., Khan, F.S.: The role of correlation in quantum and classical games. Fluct. Noise Lett. 12(3), 1350011 (2013)

    Article  Google Scholar 

  34. Roch, C., et al.: A quantum annealing algorithm for finding pure Nash equilibria in graphical games. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 488–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_38

    Chapter  Google Scholar 

  35. Sprague, R.P.: Über mathematische kampfspiele. Tohoku Math. J. 41, 438–444 (1935)

    MATH  Google Scholar 

  36. Vaidman, L.: Variations on the theme of the Greenberger-Horne-Zeilinger proof. Found. Phys. 29, 615 (1999). https://doi.org/10.1023/A:1018868326838

    Article  MathSciNet  Google Scholar 

  37. Werner, R.F., Wolf, M.M.: Bell inequalities and entanglement. Quantum Inf. Comput. 1(3), 1–25 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Werner, R.F., Wolf, M.M.: All multipartite Bell correlation inequalities for two dichotomic observables per site. Phys. Rev. A 64, 032112 (2001)

    Article  Google Scholar 

  39. Zhang, S.: Quantum Strategic Game Theory. arXiv:1012.5141 (2010)

Download references

Acknowledgement

The research is supported by PostDoc Latvia Program, and by the ERDF within the project 1.1.1.2/VIAA/1/16/099 “Optimal quantum-entangled behavior under unknown circumstances”. A part of the reported study was funded by RFBR according to the research project No. 19-37-80008. A part of the research was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project No. 0671-2020-0065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Khadiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kravchenko, D., Khadiev, K., Serov, D., Kapralov, R. (2020). Quantum-over-Classical Advantage in Solving Multiplayer Games. In: Schmitz, S., Potapov, I. (eds) Reachability Problems. RP 2020. Lecture Notes in Computer Science(), vol 12448. Springer, Cham. https://doi.org/10.1007/978-3-030-61739-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61739-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61738-7

  • Online ISBN: 978-3-030-61739-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics