Skip to main content

Bi-invariant Two-Sample Tests in Lie Groups for Shape Analysis

Data from the Alzheimer’s Disease Neuroimaging Initiative

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2020)

Abstract

We propose generalizations of the Hotelling’s \(T^2\) statistic and the Bhattacharayya distance for data taking values in Lie groups. A key feature of the derived measures is that they are compatible with the group structure even for manifolds that do not admit any bi-invariant metric. This property, e.g. assures analysis that does not depend on the reference shape, thus, preventing bias due to arbitrary choices thereof. Furthermore, the generalizations agree with the common definitions for the special case of flat vector spaces guaranteeing consistency. Employing a permutation test setup, we further obtain nonparametric, two-sample testing procedures that themselves are bi-invariant and consistent. We validate our method in group tests revealing significant differences in hippocampal shape between individuals with mild cognitive impairment and normal controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    adni.loni.usc.edu.

References

  1. Adler, R.L., Dedieu, J., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002). https://doi.org/10.1093/imanum/22.3.359

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambellan, F., Lamecker, H., von Tycowicz, C., Zachow, S.: Statistical shape models: understanding and mastering variation in anatomy. In: Rea, P.M. (ed.) Biomedical Visualisation. AEMB, vol. 1156, 1st edn., pp. 67–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19385-0_5

    Chapter  Google Scholar 

  3. Ambellan, F., Zachow, S., von Tycowicz, C.: An as-invariant-as-possible \(\text{ GL}^+(3)\)-based statistical shape model. In: Zhu, D., et al. (eds.) MBIA/MFCA -2019. LNCS, vol. 11846, pp. 219–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33226-6_23

    Chapter  Google Scholar 

  4. Ambellan, F., Zachow, S., von Tycowicz, C.: A surface-theoretic approach for statistical shape modeling. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 21–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_3

    Chapter  Google Scholar 

  5. Bhattacharyya, A.: On a measure of divergence between two multinomial populations. Sankhyā: Indian J. Stat. 7, 401–406 (1946)

    Google Scholar 

  6. Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans. Med. Imaging 27(4), 557–568 (2008). https://doi.org/10.1109/TMI.2007.911474

    Article  Google Scholar 

  7. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications, 2nd edn. Birkhäuser, Boston (1992)

    Google Scholar 

  8. Cartan, E., Shouten, J.: On the geometry of the group-manifold of simple and semi-groups. Proc. Akad. Wetensch. Amsterdam 29, 803–815 (1926)

    Google Scholar 

  9. Eltzner, B., Huckemann, S.F.: A smeary central limit theorem for manifolds with application to high-dimensional spheres. Ann. Stat. 47(6), 3360–3381 (2019). https://doi.org/10.1214/18-AOS1781

    Article  MathSciNet  MATH  Google Scholar 

  10. Ezuz, D., Ben-Chen, M.: Deblurring and denoising of maps between shapes. Comput. Graph. Forum 36, 165–174 (2017). https://doi.org/10.1111/cgf.13254. Wiley Online Library

    Article  Google Scholar 

  11. Grenander, U.: General Pattern Theory: A Mathematical Study of Regular Structures. Oxford Mathematical Monographs. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  12. Hong, Y., Singh, N., Kwitt, R., Niethammer, M.: Group testing for longitudinal data. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 139–151. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_11

    Chapter  Google Scholar 

  13. Van Hecke, W., Emsell, L., Sunaert, S. (eds.): Diffusion Tensor Imaging. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3118-7

    Book  Google Scholar 

  14. Miller, M., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vision 41, 61–84 (2001). https://doi.org/10.1023/A:1011161132514

    Article  MATH  Google Scholar 

  15. Mueller, S.G., et al.: Hippocampal atrophy patterns in mild cognitive impairment and Alzheimer’s disease. Hum. Brain Mapp. 31(9), 1339–1347 (2010). https://doi.org/10.1002/hbm.20934

    Article  Google Scholar 

  16. Muralidharan, P., Fletcher, P.: Sasaki metrics for analysis of longitudinal data on manifolds. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2012, pp. 1027–1034 (2012). https://doi.org/10.1109/CVPR.2012.6247780

  17. Pennec, X., Sommer, S., Fletcher, T.: Riemannian Geometric Statistics in Medical Image Analysis. Elsevier Science & Technology, Amsterdam (2019). https://doi.org/10.1016/C2017-0-01561-6

    Book  MATH  Google Scholar 

  18. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25, 127–154 (2006). https://doi.org/10.1007/s10851-006-6228-4

    Article  MathSciNet  Google Scholar 

  19. Pennec, X., Arsigny, V.: Exponential barycenters of the canonical Cartan connection and invariant means on lie groups. In: Nielsen, F., Bhatia, R. (eds.) Matrix Information Geometry, pp. 123–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30232-9_7

    Chapter  Google Scholar 

  20. Postnikov, M.: Geometry VI: Riemannian Geometry. Encyclopaedia of Mathematical Sciences. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04433-9

    Book  Google Scholar 

  21. Schulz, J., Pizer, S., Marron, J., Godtliebsen, F.: Non-linear hypothesis testing of geometric object properties of shapes applied to hippocampi. J. Math. Imaging Vis. 54, 15–34 (2016). https://doi.org/10.1007/s10851-015-0587-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Thompson, D.W.: On Growth and Form. Canto. Cambridge University Press, Cambridge (1992). https://doi.org/10.1017/cbo9781107325852

    Book  Google Scholar 

  23. von Tycowicz, C., Ambellan, F., Mukhopadhyay, A., Zachow, S.: An efficient Riemannian statistical shape model using differential coordinates. Med. Image Anal. 43, 1–9 (2018). https://doi.org/10.1016/j.media.2017.09.004

    Article  Google Scholar 

  24. Woods, R.P.: Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage 18(3), 769–788 (2003). https://doi.org/10.1016/s1053-8119(03)00019-3

    Article  Google Scholar 

Download references

Acknowledgments

M. Hanik is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689). We are grateful for the open-access dataset of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.) as well as for F. Ambellan’s help in establishing dense correspondences of the hippocampal surface meshes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanik, M., Hege, HC., Tycowicz, C.v. (2020). Bi-invariant Two-Sample Tests in Lie Groups for Shape Analysis. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds) Shape in Medical Imaging. ShapeMI 2020. Lecture Notes in Computer Science(), vol 12474. Springer, Cham. https://doi.org/10.1007/978-3-030-61056-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61056-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61055-5

  • Online ISBN: 978-3-030-61056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics