Technology Contribution to Improve Autistic Children Life Quality

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12462)


To review published literature on the use of technology and how it has improved autistic children life style. A systematic review of the English literature was performed using the PRISMA guideline. Papers indexed in WOS and Scopus databases were included, adjusted to a timeline between 2016 and 2020 and focused on mobile technology, interventions, improvement of social behavior and communication and autism, aimed to describe the most used mechanism to improve autistic life style. Thirty two (32) papers were included in the review. We obtained 14 papers on the Scopus database and 18 on the WOS database. The majority of studies evidenced the use of virtual reality, mobile devices, video modelling and robots as the most common applications for autism therapies. Technology has caused an improvement in autistic children life quality. The development of mobile applications, virtual reality applications and robots have showed a positive impact reflected in the performance of daily activities and a better understanding of how they feel, how to behave, how to express themselves and interact with others. Technology gives the opportunity to monitor children status; and offers adaptability, safety, and accuracy of the information.


Autism spectrum disorder Autism therapies Technology intervention Review of the literature 



This research has been supported under the REMIND project Marie Sklodowska Curie EU Framework for Research and Innovation Horizon 2020, under grant agreement No. 734355 Project REMIND.


  1. 1.
    Dekhil, O., et al.: Using resting state functional MRI to build a personalized autism diagnosis system. no. Isbi, pp. 1381–1385 (2018)Google Scholar
  2. 2.
    Bekele, E., Wade, J., Bian, D., Fan, J., Swanson, A., Warren, Z.: Multimodal adaptive social interaction in virtual environment (MASI-VR) for children with autism spectrum disorders (ASD). In: 2016 IEEE Virtual Reality (VR), pp. 121–130 (2016)Google Scholar
  3. 3.
    Santamaria, A.F., De Rango, F., Serianni, A., Raimondo, P.: A real IoT device deployment for e-Health applications under lightweight communication protocols, activity classifier and edge data filtering. Comput. Commun. 128, 60–73 (2018)CrossRefGoogle Scholar
  4. 4.
    Rodrigues, J.J.P.C., et al.: Enabling technologies for the internet of health things. In: IEEE Access, vol. 6, pp. 13129–13141 (2018)Google Scholar
  5. 5.
    Comas-González, Z., Echeverri-Ocampo, I., Zamora-Musa, R., Velez, J., Sarmiento, R., Orellana, M.: Recent trends in virtual education and its strong connection with the immersive environments [Tendencias recientes de la educación virtual y su fuerte conexión con los entornos inmersivos]. Espacios, vol. 38, no. 15 (2017)Google Scholar
  6. 6.
    Pilotte, M.: Autism spectrum disorder and engineering education—needs and considerations. In: 2016 IEEE Frontiers in Education Conference (FIE) (2016)Google Scholar
  7. 7.
    Uzuegbunam, N., Wong, W.H., Ching, S., Cheung, S., Ruble, L.: MEBook: multimedia social greetings intervention for children with autism spectrum disorders. IEEE Trans. Learn. Technol. XX (January 2016), 1–17 (2017)Google Scholar
  8. 8.
    Beattie, M., Hallberg, J., Nugent, C., Synnes, K., Cleland, I., Lee, S.: A collaborative patient-carer interface for generating home based rules for self-management. In: Bodine, C., Helal, S., Gu, T., Mokhtari, M. (eds.) ICOST 2014. LNCS, vol. 8456, pp. 93–102. Springer, Cham (2015). Scholar
  9. 9.
    Ahmed, I.U., Hassan, N., Rashid, H.: Solar powered smart wearable health monitoring and tracking device based on GPS and GSM technology for children with autism. In: 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), pp. 111–116 (2017)Google Scholar
  10. 10.
    Ogwulu, C.B., Jackson, L.J., Kinghorn, P., Roberts, T.E.: A systematic review of the techniques used to value temporary health states. Value Health 20(8), 1180–1197 (2017)CrossRefGoogle Scholar
  11. 11.
    De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition—a systematic review of literature. IEEE Access 6, 59192–59210 (2018)CrossRefGoogle Scholar
  12. 12.
    Comas-González, Z., Simancas-García, J., Rueda Bernal, V., Vélez-Zapata, J., Percia, I.: Redes de sensores inalámbricos para la monitorización de sistemas de calefacción, ventilación y aire acondicionado. Rev. Espac. 39(45), 13 (2018)Google Scholar
  13. 13.
    Bagdadli, S., Gianecchini, M.: Organizational career management practices and objective career success: a systematic review and framework. Hum. Resour. Manag. Rev. (September 2017), 1 (2018)Google Scholar
  14. 14.
    Briscoe, E., Appling, S., Schlosser, J.: Technology futures from passive crowdsourcing. IEEE Trans. Comput. Soc. Syst. 3(1), 23–31 (2016)CrossRefGoogle Scholar
  15. 15.
    Zaki, T., Islam, M.N., Uddin, S., Tumpa, S.N., Hossain, J.: Towards developing a learning tool for children with autism. In: 2017 6th International Conference on Informatics, Electronics and Vision & 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT) (2017)Google Scholar
  16. 16.
    Shi, Y., Das, S., Douglas, S., Biswas, S.: An experimental wearable IoT for data-driven management of autism. In: 2017 9th International Conference on Communication Systems and Networks, COMSNETS 2017, pp. 468–471 (2017)Google Scholar
  17. 17.
    Pasco, G.: The value of early intervention for children with autism. Paediatr. Child Health (Oxford) 28(8), 364–367 (2018)CrossRefGoogle Scholar
  18. 18.
    Moreno, J.C., Morales, E.M.S., Seller, E.P.: Case study of the vulnerabilities that children with autism spectrum disorder have in education: the importance of early detection. Procedia Soc. Behav. Sci. 237, 661–666 (2017)CrossRefGoogle Scholar
  19. 19.
    Grossard, C., Grynspan, O., Serret, S., Jouen, A.L., Bailly, K., Cohen, D.: Serious games to teach social interactions and emotions to individuals with autism spectrum disorders (ASD). Comput. Educ. 113, 195–211 (2017)CrossRefGoogle Scholar
  20. 20.
    Bozgeyikli, L., Raij, A., Katkoori, S., Alqasemi, R.: A survey on virtual reality for individuals with autism spectrum disorder: design considerations. IEEE Trans. Learn. Technol. 11(2), 133–151 (2018)CrossRefGoogle Scholar
  21. 21.
    Boyd, L.E., Hayes, G.R.: Wearable assistive technologies for autism opportunities and challenges. IEEE Pervasive Comput. 17, 11–21 (2018)CrossRefGoogle Scholar
  22. 22.
    Kumdee, O.: Repetitive motion detection for human behavior understanding from video images. In: 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 484–489 (2015)Google Scholar
  23. 23.
    Zunino, A., et al.: Video gesture analysis for autism spectrum disorder detection. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3421–3426 (2018)Google Scholar
  24. 24.
    Min, C.-H.: Automatic detection and labeling of self-stimulatory behavioral patterns in children with autism spectrum disorder. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 279–282 (2017)Google Scholar
  25. 25.
    Calandra, D.M. Di Mauro, D., Cutugno, F., Di Martino, S.: Navigating wall-sized displays with the gaze: a proposal for cultural heritage. CEUR Workshop Proceeding, vol. 1621, no. January pp. 36–43 (2016)Google Scholar
  26. 26.
    Seshadri, S.: iPad gives voice to kids with autism. CNN (2012).
  27. 27.
    Al-khalifa, H.S., Alrajhi, W., Alhassan, S., Almotlag, M.: Requirement elicitation for a toilet training wearable watch to serve autistic children. In: 2017 6th International Conference on Information and Communication Technology and Accessibility (ICTA) (2018)Google Scholar
  28. 28.
    Technologies, R., Hollosy, W.O.N., Notenboom, T., Banos, O.: A study on the perceptions of autistic adolescents towards mainstream emotion. In: 12th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2018), vol. 10, pp. 1–12 (2018)Google Scholar
  29. 29.
    Adolfo, J., Camargo, C., Augusto, C., Cortés, P., García, P.: Evaluación de las emociones de usuarios en tareas con realimentación háptica utilizado el dispositivo Emotiv Insight Assessment of the users emotions in haptic feedback tasks using the Emotiv Insight device. INGE CUC 15(1), 9–16 (2019)CrossRefGoogle Scholar
  30. 30.
    Chandler, D.: Opening new worlds for those with autism: technology is creating great new possibilities for those on every part of the spectrum. IEEE Pulse. 7(4), 43–46 (2016)CrossRefGoogle Scholar
  31. 31.
    Akbar, G.S.: User interface (UI) design of scheduling activity apps for autistic children. In: 2017 International Conference on Orange Technologies (ICOT), pp. 129–133 (2017)Google Scholar
  32. 32.
    Kamaruzaman, M.F., Noor, H., Hanapiah, F.A., Halabi, M., Azahari, H.: Efficacy of DTT by using touchscreen learning numeracy app for children with autism. In: 2016 IEEE 8th International Conference on Engineering Education (ICEED), pp. 198–201 (2016)Google Scholar
  33. 33.
    Papathomas, P., Goldschmidt, K.: Utilizing virtual reality and immersion video technology as a focused learning tool for children with autism spectrum disorder. J. Pediatr. Nurs. 35, 8–9 (2017)CrossRefGoogle Scholar
  34. 34.
    Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D., Chapman, S.: Virtual Reality Social Cognition Training for children with high functioning autism. Comput. Hum. Behav. 62, 703–711 (2016)CrossRefGoogle Scholar
  35. 35.
    Lamash, L., Klinger, E., Josman, N.: Using a virtual supermarket to promote independent functioning among adolescents with Autism Spectrum Disorder. In: International Conference on Virtual Rehabilitation, ICVR (2017)Google Scholar
  36. 36.
    Bozgeyikli, L., Bozgeyikli, E., Raij, A., Alqasemi, R., Katkoori, S., Dubey, R.: Vocational training with immersive virtual reality for individuals with autism: towards better design practices. In: 2016 IEEE 2nd Workshop on Everyday Virtual Reality, WEVR 2016, pp. 21–25 (2017)Google Scholar
  37. 37.
    Health Tech Digital: Floreo brings autism therapy into the home environment.
  38. 38.
    Munoz, R., Barcelos, T.T.S., Villarroel, R., Silveira, I.F.: Game design workshop to develop computational thinking skills in teenagers with Autism Spectrum Disorders. In: 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–4 (2016)Google Scholar
  39. 39.
    Salter, T., Davey, N., Francoise, M.: Designing & developing QueBall, a robotic device for autism therapy Designing & Developing QueBall, A Robotic Device for Autism Therapy. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, 2016 (October), pp. 574–579 (2014)Google Scholar
  40. 40.
    Zheng, Z., Young, E.M., Swanson, A.R., Weitlauf, A.S., Warren, Z.E., Sarkar, N.: Robot-mediated imitation skill training for children with autism. IEEE Trans. Neural Syst. Rehabil. Eng. 24(6), 682–691 (2016)CrossRefGoogle Scholar
  41. 41.
    Ackovska, N., Kirandziska, V., Tanevska, A., Bozinovska, L., Bozinovski, A.: Robot - Assisted therapy for autistic children. In: Conference Proceedings - IEEE SOUTHEASTCON, pp. 1–2 (2017)Google Scholar
  42. 42.
    Kevin, C.: Moving, Speaking Robots Help Detect Autism Earlier. University of Minnesota (2018)Google Scholar
  43. 43.
    Mavadati, S.M., Feng, H., Salvador, M., Silver, S., Gutierrez, A., Mahoor, M.H.: Robot-based therapeutic protocol for training children with Autism. In: 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016, pp. 855–860 (2016)Google Scholar
  44. 44.
    Jiménez Moreno, R., Espinosa Valcárcel, F., Amaya Hurtado, D.: Control de movimiento de un robot humanoide por medio de visión de máquina y réplica de movimientos humanos. INGE CUC 9(2), 44–51. Recuperado a partir de

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad de la CostaBarranquillaColombia
  2. 2.Luleå Tekniska UniversitetLuleåSweden
  3. 3.Universidad Manuela BeltránBogotáColombia

Personalised recommendations